IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp462-471.html
   My bibliography  Save this article

Thermal properties of RT22 HC and RT28 HC phase change materials proposed to reduce energy consumption in heating and cooling systems

Author

Listed:
  • Rolka, Paulina
  • Przybylinski, Tomasz
  • Kwidzinski, Roman
  • Lackowski, Marcin

Abstract

The construction sector accounts for 40% of total energy consumption and is increasing. To reduce energy consumption of heating and cooling systems during peak demand while maintaining thermal comfort, phase change materials (PCMs) are used more and more. Appropriate application of PCM and design of latent heat thermal energy storage (LHTES) requires in practice an in-depth knowledge of the thermal properties of PCMs. The aim of the paper is to present the results of experimental determination of the properties of two commercially available, organic PCMs – RT22HC and RT28 HC, using T-history method and pipe Poensgen apparatus. Results of experimental tests showed that these low-temperature PCMs could effectivity store heat and cold in a narrow temperature range of approx. 7 K for RT22 HC and about 3–4 K for RT28 HC. The average measured latent heat values are 190 kJ/kg for RT22 HC and 244 kJ/kg for RT28 HC. The distribution of energy stored in RT22 HC shows the peak in the temperature range of 21–23 °C (with 20–50 kJ/kgK for heating, 22–71 kJ/kgK for cooling). For RT28 HC this range is 27–28 °C (75–130 kJ/kgK for heating, 40–125 kJ/kgK for cooling). The diagrams of enthalpy present small hysteresis (0.5–1 K) in these materials. Thermal conductivity measurements using pipe Poensgen apparatus demonstrated that these PCMs have a low conductivity of 0.12–0.33 W/mK. The presented experimental research is intended to provide the data necessary for the correct design of LHTES with RT22 HC or RT28 HC intended to use in heating and cooling systems and to maintain thermal comfort in buildings.

Suggested Citation

  • Rolka, Paulina & Przybylinski, Tomasz & Kwidzinski, Roman & Lackowski, Marcin, 2022. "Thermal properties of RT22 HC and RT28 HC phase change materials proposed to reduce energy consumption in heating and cooling systems," Renewable Energy, Elsevier, vol. 197(C), pages 462-471.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:462-471
    DOI: 10.1016/j.renene.2022.07.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barreneche, Camila & Navarro, Lidia & de Gracia, Alvaro & Fernández, A. Inés & Cabeza, Luisa F., 2016. "In situ thermal and acoustic performance and environmental impact of the introduction of a shape-stabilized PCM layer for building applications," Renewable Energy, Elsevier, vol. 85(C), pages 281-286.
    2. Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
    3. Rouault, Fabien & Bruneau, Denis & Sebastian, Patrick & Lopez, Jérôme, 2013. "Numerical modelling of tube bundle thermal energy storage for free-cooling of buildings," Applied Energy, Elsevier, vol. 111(C), pages 1099-1106.
    4. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    5. Rolka, Paulina & Przybylinski, Tomasz & Kwidzinski, Roman & Lackowski, Marcin, 2021. "The heat capacity of low-temperature phase change materials (PCM) applied in thermal energy storage systems," Renewable Energy, Elsevier, vol. 172(C), pages 541-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wołoszyn, Jerzy & Szopa, Krystian, 2023. "A combined heat transfer enhancement technique for shell-and-tube latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 202(C), pages 1342-1356.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    3. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    5. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    6. Rolka, Paulina & Przybylinski, Tomasz & Kwidzinski, Roman & Lackowski, Marcin, 2021. "The heat capacity of low-temperature phase change materials (PCM) applied in thermal energy storage systems," Renewable Energy, Elsevier, vol. 172(C), pages 541-550.
    7. Wu, Minqiang & Li, Tingxian & He, Qifan & Du, Ruxue & Wang, Ruzhu, 2022. "Thermally conductive and form-stable phase change composite for building thermal management," Energy, Elsevier, vol. 239(PA).
    8. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Ahmad, Abrar & Memon, Shazim Ali, 2024. "A novel method to evaluate phase change materials' impact on buildings' energy, economic, and environmental performance via controlled natural ventilation," Applied Energy, Elsevier, vol. 353(PB).
    10. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    11. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    12. Jiaming Wang & Hailong He & Miles Dyck & Jialong Lv, 2020. "A Review and Evaluation of Predictive Models for Thermal Conductivity of Sands at Full Water Content Range," Energies, MDPI, vol. 13(5), pages 1-15, March.
    13. Cárdenas-Ramírez, Carolina & Gómez, Maryory A. & Jaramillo, Franklin & Fernández, Angel G. & Cabeza, Luisa F., 2021. "Experimental determination of thermal conductivity of fatty acid binary mixtures and their shape-stabilized composites," Renewable Energy, Elsevier, vol. 175(C), pages 1167-1173.
    14. Xiaolei Wang & Xiaoshu Lü & Lauri Vähä-Savo & Katsuyuki Haneda, 2023. "A Novel AI-Based Thermal Conductivity Predictor in the Insulation Performance Analysis of Signal-Transmissive Wall," Energies, MDPI, vol. 16(10), pages 1-16, May.
    15. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M, 2016. "Application of weather forecast in conjunction with price-based method for PCM solar passive buildings – An experimental study," Applied Energy, Elsevier, vol. 163(C), pages 9-18.
    16. Huang, Zhiliang & Wang, Huaixing & Gan, Zhouwang & Yang, Tongguang & Yuan, Cong & Lei, Bing & Chen, Jie & Wu, Shengben, 2024. "An mechanical/thermal analytical model for prismatic lithium-ion cells with silicon‑carbon electrodes in charge/discharge cycles," Applied Energy, Elsevier, vol. 365(C).
    17. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    18. Rebeca Salgado-Pizarro & Jose Antonio Padilla & Elena Xuriguera & Camila Barreneche & Ana Inés Fernández, 2021. "Novel Shape-Stabilized Phase Change Material with Cascade Character: Synthesis, Performance and Shaping Evaluation," Energies, MDPI, vol. 14(9), pages 1-13, May.
    19. Li, Yilin & Darkwa, Jo & Kokogiannakis, Georgios & Su, Weiguang, 2019. "Phase change material blind system for double skin façade integration: System development and thermal performance evaluation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:462-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.