IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp1247-1260.html
   My bibliography  Save this article

Impact of thermosiphoning on long-term behavior of closed-loop deep geothermal systems for sustainable energy exploitation

Author

Listed:
  • Esmaeilpour, Morteza
  • Gholami Korzani, Maziar
  • Kohl, Thomas

Abstract

Circulation of working fluid in closed geothermal loops is an alternative environmentally friendly approach to harvest subsurface energy compared to open hole geothermal doublet systems. However, the rapid decline of production temperature, low generated thermal power, and difficulties in deepening the system are major limitations. Herein, synthetic studies are presented to investigate the system's performance and improve its longevity for better use of this clean baseload power. The investigations are conducted by implementing appropriate equations of state to model state-of-the-art thermal and hydraulics processes in wellbores and considering various geometrical configurations to adopt proper design strategies. They provide insight for maximizing the generated thermal power, decreasing pumping energy, and avoiding production temperature drawdown. The results indicate that a stable thermal condition could be reached in which not only the temperature breakthrough is avoidable, but also the generated thermal power and production temperature continuously enhance over the project lifetime of one century. Analysis of the thermosiphon effect in the designed systems revealed that even with the pressure loss of 900 kPa at surface installations, the triggered natural flow rate is larger than 11 L/s. This thermosiphon flow rate yields the thermal power production of 2 MW and Cumulative extracted energy of 15 PJ over the project lifetime of 100 years. Restriction of this flow rate to 5 L/s leads to an average extraction temperature of 80 °C. It is also found that a change in the subsurface temperature gradient does not affect the optimal 2 km isolation length of the production well.

Suggested Citation

  • Esmaeilpour, Morteza & Gholami Korzani, Maziar & Kohl, Thomas, 2022. "Impact of thermosiphoning on long-term behavior of closed-loop deep geothermal systems for sustainable energy exploitation," Renewable Energy, Elsevier, vol. 194(C), pages 1247-1260.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1247-1260
    DOI: 10.1016/j.renene.2022.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200845X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    2. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Xu, Zhengming & Zheng, Rui & Wang, Gaosheng & Lyu, Zehao, 2017. "Heat extraction performance simulation for various configurations of a downhole heat exchanger geothermal system," Energy, Elsevier, vol. 141(C), pages 1489-1503.
    3. Song, Xianzhi & Shi, Yu & Li, Gensheng & Shen, Zhonghou & Hu, Xiaodong & Lyu, Zehao & Zheng, Rui & Wang, Gaosheng, 2018. "Numerical analysis of the heat production performance of a closed loop geothermal system," Renewable Energy, Elsevier, vol. 120(C), pages 365-378.
    4. Kai Stricker & Jens C. Grimmer & Robert Egert & Judith Bremer & Maziar Gholami Korzani & Eva Schill & Thomas Kohl, 2020. "The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems," Energies, MDPI, vol. 13(24), pages 1-26, December.
    5. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    6. Chen, Jingping & Feng, Shaohang, 2020. "Evaluating a large geothermal absorber’s energy extraction and storage performance in a common geological condition," Applied Energy, Elsevier, vol. 279(C).
    7. Eyerer, S. & Schifflechner, C. & Hofbauer, S. & Bauer, W. & Wieland, C. & Spliethoff, H., 2020. "Combined heat and power from hydrothermal geothermal resources in Germany: An assessment of the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Blázquez, Cristina Sáez & Martín, Arturo Farfán & Nieto, Ignacio Martín & García, Pedro Carrasco & Sánchez Pérez, Luis Santiago & González-Aguilera, Diego, 2017. "Analysis and study of different grouting materials in vertical geothermal closed-loop systems," Renewable Energy, Elsevier, vol. 114(PB), pages 1189-1200.
    9. Caulk, Robert A. & Tomac, Ingrid, 2017. "Reuse of abandoned oil and gas wells for geothermal energy production," Renewable Energy, Elsevier, vol. 112(C), pages 388-397.
    10. Adel Eswiasi & Phalguni Mukhopadhyaya, 2020. "Critical Review on Efficiency of Ground Heat Exchangers in Heat Pump Systems," Clean Technol., MDPI, vol. 2(2), pages 1-21, June.
    11. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    12. Roy, Debasree & Chakraborty, Tanusree & Basu, Dipanjan & Bhattacharjee, Bishwajit, 2020. "Feasibility and performance of ground source heat pump systems for commercial applications in tropical and subtropical climates," Renewable Energy, Elsevier, vol. 152(C), pages 467-483.
    13. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Yuan, Wanju & Chen, Zhuoheng & Grasby, Stephen E. & Little, Edward, 2021. "Closed-loop geothermal energy recovery from deep high enthalpy systems," Renewable Energy, Elsevier, vol. 177(C), pages 976-991.
    15. Tang, Hewei & Xu, Boyue & Hasan, A. Rashid & Sun, Zhuang & Killough, John, 2019. "Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions," Renewable Energy, Elsevier, vol. 133(C), pages 1124-1135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esmaeilpour, Morteza & Gholami Korzani, Maziar & Kohl, Thomas, 2023. "Stochastic performance assessment on long-term behavior of multilateral closed deep geothermal systems," Renewable Energy, Elsevier, vol. 208(C), pages 26-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    3. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    4. Esmaeilpour, Morteza & Gholami Korzani, Maziar & Kohl, Thomas, 2023. "Stochastic performance assessment on long-term behavior of multilateral closed deep geothermal systems," Renewable Energy, Elsevier, vol. 208(C), pages 26-35.
    5. Wei, Changjiang & Mao, Liangjie & Yao, Changshun & Yu, Guijian, 2022. "Heat transfer investigation between wellbore and formation in U-shaped geothermal wells with long horizontal section," Renewable Energy, Elsevier, vol. 195(C), pages 972-989.
    6. Theo Renaud & Lehua Pan & Hannah Doran & Gioia Falcone & Patrick G. Verdin, 2021. "Numerical Analysis of Enhanced Conductive Deep Borehole Heat Exchangers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    7. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Huang, Guangping & Liu, Wei Victor, 2021. "Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 334-349.
    8. Gola, Gianluca & Di Sipio, Eloisa & Facci, Marina & Galgaro, Antonio & Manzella, Adele, 2022. "Geothermal deep closed-loop heat exchangers: A novel technical potential evaluation to answer the power and heat demands," Renewable Energy, Elsevier, vol. 198(C), pages 1193-1209.
    9. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2023. "Numerical simulation study of intermittent heat extraction from hot dry rock using horizontal well based on thermal compensation," Energy, Elsevier, vol. 272(C).
    11. Xu, Fuqiang & Song, Xianzhi & Song, Guofeng & Ji, Jiayan & Song, Zihao & Shi, Yu & Lv, Zehao, 2023. "Numerical studies on heat extraction evaluation and multi-objective optimization of abandoned oil well patterns in intermittent operation mode," Energy, Elsevier, vol. 269(C).
    12. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    13. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    14. Molina-Rodea, R. & Saucedo-Velázquez, J. & Gómez-Franco, W.R. & Wong-Loya, J.A., 2024. "Operational proposal of “U” type earth heat exchanger harnessing a non-producing well for energy supply to an absorption cooling system. Approach with “La Primavera” geothermal field data," Renewable Energy, Elsevier, vol. 227(C).
    15. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).
    16. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    17. Moussa, Tamer & Dehghanpour, Hassan, 2022. "Evaluating geothermal energy production from suspended oil and gas wells by using data mining," Renewable Energy, Elsevier, vol. 196(C), pages 1294-1307.
    18. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    19. Wang, Gaosheng & Song, Xianzhi & Yu, Chao & Shi, Yu & Song, Guofeng & Xu, Fuqiang & Ji, Jiayan & Song, Zihao, 2022. "Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well," Energy, Elsevier, vol. 242(C).
    20. Malek, Adam E. & Adams, Benjamin M. & Rossi, Edoardo & Schiegg, Hans O. & Saar, Martin O., 2022. "Techno-economic analysis of Advanced Geothermal Systems (AGS)," Renewable Energy, Elsevier, vol. 186(C), pages 927-943.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1247-1260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.