IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp557-570.html
   My bibliography  Save this article

Efficiency increase of photovoltaic systems by means of evaporative cooling in a back-mounted chimney-like channel

Author

Listed:
  • Altegoer, D.
  • Hussong, J.
  • Lindken, R.

Abstract

An increased cell temperature due to solar irradiance causes a decrease in conversion efficiency of a solar cell, i.e., a loss in electrical output. In this study, we present a cooling method for a cell temperature decrease by means of water droplet evaporation in a chimney-like channel attached to the back side of a photovoltaic module. The system design process starts with shadowgraph imaging of various atomizer nozzles. The optimal atomizer nozzle is then integrated into a laboratory test setup for parameter studies of the cooling performance and of the water usage. A cooling approach with two pin-jet nozzles positioned at the inlet and outlet of the cooling channel facing each other yields the best result in terms of water usage per efficiency increase. The efficiency of the solar cell is increased by 8.7% consuming 9.2 l of water per hour and square meter of the photovoltaic module. The evaporation rate limits the amount of moisture absorbed by the air in the channel to only 10% of the water needed for effective atomization. The excess water settles as a water film in the channel and on the back side of the photovoltaic module, causing an additional film cooling effect. A comparison of the optimized cooling system with results from the literature for continuous water spray cooling shows six times less water usage per percent efficiency increase. With the use of the chimney-like channel, deposits such as moss or calcium do not occur on the front side of the photovoltaic module. Moreover, the risk of stress cracks in the glass surface due to temperature gradients is avoided. The current data give a strong indication that ongoing optimization with custom designed atomizer nozzles will further reduce the water usage towards a profitable system operation.

Suggested Citation

  • Altegoer, D. & Hussong, J. & Lindken, R., 2022. "Efficiency increase of photovoltaic systems by means of evaporative cooling in a back-mounted chimney-like channel," Renewable Energy, Elsevier, vol. 191(C), pages 557-570.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:557-570
    DOI: 10.1016/j.renene.2022.03.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaglia, Athina G. & Lykoudis, Spyros & Argiriou, Athanassios A. & Balaras, Constantinos A. & Dialynas, Evangelos, 2017. "Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens, Greece," Renewable Energy, Elsevier, vol. 101(C), pages 236-243.
    2. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    3. Lucas, M. & Aguilar, F.J. & Ruiz, J. & Cutillas, C.G. & Kaiser, A.S. & Vicente, P.G., 2017. "Photovoltaic Evaporative Chimney as a new alternative to enhance solar cooling," Renewable Energy, Elsevier, vol. 111(C), pages 26-37.
    4. Tina, Giuseppe Marco & Bontempo Scavo, Fausto & Merlo, Leonardo & Bizzarri, Fabrizio, 2021. "Analysis of water environment on the performances of floating photovoltaic plants," Renewable Energy, Elsevier, vol. 175(C), pages 281-295.
    5. Duan, Juan, 2021. "The PCM-porous system used to cool the inclined PV panel," Renewable Energy, Elsevier, vol. 180(C), pages 1315-1332.
    6. Padilha Campos Lopes, Mariana & Nogueira, Tainan & Santos, Alberto José Leandro & Castelo Branco, David & Pouran, Hamid, 2022. "Technical potential of floating photovoltaic systems on artificial water bodies in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 1023-1033.
    7. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    8. Hadipour, Amirhosein & Rajabi Zargarabadi, Mehran & Rashidi, Saman, 2021. "An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis," Renewable Energy, Elsevier, vol. 164(C), pages 867-875.
    9. Rosa-Clot, M. & Rosa-Clot, P. & Tina, G.M. & Scandura, P.F., 2010. "Submerged photovoltaic solar panel: SP2," Renewable Energy, Elsevier, vol. 35(8), pages 1862-1865.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qi & He, Suoying & Song, Tianyi & Wang, Mingwei & Liu, Zhilan & Zhao, Jifang & Gao, Qi & Huang, Xiang & Han, Kuihua & Qi, Jianhui & Gao, Ming & Shi, Yuetao, 2023. "Modeling of a PV system by a back-mounted spray cooling section for performance improvement," Applied Energy, Elsevier, vol. 332(C).
    2. Singh, Ajeet Pratap & Singh, Jaydeep & Kumar, Amit & Singh, O.P., 2023. "Vertical limit reduction of chimney in solar power plant," Renewable Energy, Elsevier, vol. 217(C).
    3. Cengiz, Mazlum & Kayri, İsmail & Aydın, Hüseyin, 2024. "A collated overview on the evaporative cooling applications for photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    3. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    4. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    5. Huaimo You & Hong Fang & Xu Wang & Siran Fang, 2018. "Environmental Efficiency of Photovoltaic Power Plants in China—A Comparative Study of Different Economic Zones and Plant Types," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    6. Ateş, Ali Murat, 2022. "Unlocking the floating photovoltaic potential of Türkiye's hydroelectric power plants," Renewable Energy, Elsevier, vol. 199(C), pages 1495-1509.
    7. Cengiz, Mazlum & Kayri, İsmail & Aydın, Hüseyin, 2024. "A collated overview on the evaporative cooling applications for photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    9. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    10. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    11. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    12. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2020. "Energy performance investigation of net plus energy town: Energy balance of the Jincheon Eco-Friendly energy town," Renewable Energy, Elsevier, vol. 147(P1), pages 1784-1800.
    13. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    15. Zeyad A. Haidar & Jamel Orfi & Zakariya Kaneesamkandi, 2020. "Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches," Energies, MDPI, vol. 14(1), pages 1-20, December.
    16. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    17. Ewelina Krawczak, 2023. "A Comparative Analysis of Measured and Simulated Data of PV Rooftop Installations Located in Poland," Energies, MDPI, vol. 16(16), pages 1-17, August.
    18. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2020. "Field Analysis of three different silicon-based Technologies in Composite Climate Condition – Part II – Seasonal assessment and performance degradation rates using statistical tools," Renewable Energy, Elsevier, vol. 147(P1), pages 2102-2117.
    19. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Mendis, Thushini & Huang, Zhaojian & Xu, Shen & Zhang, Weirong, 2020. "Economic potential analysis of photovoltaic integrated shading strategies on commercial building facades in urban blocks: A case study of Colombo, Sri Lanka," Energy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:557-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.