Graphene-based deep eutectic solvent nanofluids with high photothermal conversion and high-grade energy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.03.145
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
- Liu, Jian & Wang, Fuxian & Zhang, Long & Fang, Xiaoming & Zhang, Zhengguo, 2014. "Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications," Renewable Energy, Elsevier, vol. 63(C), pages 519-523.
- Joseph, Albin & Thomas, Shijo, 2022. "Energy, exergy and corrosion analysis of direct absorption solar collector employed with ultra-high stable carbon quantum dot nanofluid," Renewable Energy, Elsevier, vol. 181(C), pages 725-737.
- Mohammed, Hussein A. & Vuthaluru, Hari B. & Liu, Shaomin, 2022. "Thermohydraulic and thermodynamics performance of hybrid nanofluids based parabolic trough solar collector equipped with wavy promoters," Renewable Energy, Elsevier, vol. 182(C), pages 401-426.
- Pramanik, Anurag & Singh, Harjit & Chandra, Ram & Vijay, Virendra Kumar & Suresh, S., 2022. "Amorphous carbon based nanofluids for direct radiative absorption in solar thermal concentrators – Experimental and computational study," Renewable Energy, Elsevier, vol. 183(C), pages 651-661.
- Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
- Tong, Yijie & Boldoo, Tsogtbilegt & Ham, Jeonggyun & Cho, Honghyun, 2020. "Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid," Energy, Elsevier, vol. 196(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Xingyu & Chen, Meijie & Zhou, Ping, 2022. "Solar-thermal conversion performance of heterogeneous nanofluids," Renewable Energy, Elsevier, vol. 198(C), pages 1307-1317.
- Al-Farsi, Raiyan & Hayyan, Maan, 2023. "Paving the way for advancement of renewable energy technologies using deep eutectic solvents: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
- Mohammadpour, Javad & Salehi, Fatemeh & Sheikholeslami, Mohsen & Lee, Ann, 2022. "A computational study on nanofluid impingement jets in thermal management of photovoltaic panel," Renewable Energy, Elsevier, vol. 189(C), pages 970-982.
- Duan, Xiaojian & Shen, Chao & Liu, Dingming & Wu, Yupeng, 2023. "The performance analysis of a photo/thermal catalytic Trombe wall with energy generation," Renewable Energy, Elsevier, vol. 218(C).
- Fan, Ruijin & Wan, Minghan & Zhou, Tian & Zheng, Nianben & Sun, Zhiqiang, 2024. "Graphene-enhanced phase change material systems: Minimizing optical and thermal losses for solar thermal applications," Energy, Elsevier, vol. 289(C).
- Zhang, Shaoliang & Liu, Shuli & Xu, Zhiqi & Chen, Hongkuan & Wang, Jihong & Li, Yongliang & Yar Khan, Sheher & Kumar, Mahesh, 2024. "Effect of the irradiation intensity on the photo-thermal conversion performance of composite phase change materials: An experimental approach," Renewable Energy, Elsevier, vol. 225(C).
- Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
- Jia, Lisi & Chen, Ying & Lei, Shijun & Mo, Songping & Luo, Xianglong & Shao, Xuefeng, 2016. "External electromagnetic field-aided freezing of CMC-modified graphene/water nanofluid," Applied Energy, Elsevier, vol. 162(C), pages 1670-1677.
- Hong, Wenpeng & Li, Boyu & Li, Haoran & Zi, Junliang, 2023. "Output energy distribution potential enabled by a nanofluid-assisted hybrid generator," Energy, Elsevier, vol. 265(C).
- Pavel G. Struchalin & Dmitrii M. Kuzmenkov & Vladimir S. Yunin & Xinzhi Wang & Yurong He & Boris V. Balakin, 2022. "Hybrid Nanofluid in a Direct Absorption Solar Collector: Magnetite vs. Carbon Nanotubes Compete for Thermal Performance," Energies, MDPI, vol. 15(5), pages 1-8, February.
- Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Shahrul, I.M. & Mahbubul, I.M. & Khaleduzzaman, S.S. & Saidur, R. & Sabri, M.F.M., 2014. "A comparative review on the specific heat of nanofluids for energy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 88-98.
- Wen, Jin & Li, Xiaoke & Zhang, He & Chen, Meijie & Wu, Xiaohu, 2022. "Enhancement of solar absorption performance using TiN@SiCw plasmonic nanofluids for effective photo-thermal conversion: Numerical and experimental investigation," Renewable Energy, Elsevier, vol. 193(C), pages 1062-1073.
- Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
- Javadpour, Reza & Zeinali Heris, Saeed & Mohammadfam, Yaghoub, 2021. "Optimizing the effect of concentration and flow rate of water/ MWCNTs nanofluid on the performance of a forced draft cross-flow cooling tower," Energy, Elsevier, vol. 217(C).
- Liu, Haotuo & Ma, Zenghong & Zhang, Chenggui & Ai, Qing & Xie, Ming & Wu, Xiaohu, 2023. "Optical properties of hollow plasmonic nanopillars for efficient solar photothermal conversion," Renewable Energy, Elsevier, vol. 208(C), pages 251-262.
- Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
- Xu, Xinxin & Xu, Chao & Liu, Jian & Fang, Xiaoming & Zhang, Zhengguo, 2019. "A direct absorption solar collector based on a water-ethylene glycol based nanofluid with anti-freeze property and excellent dispersion stability," Renewable Energy, Elsevier, vol. 133(C), pages 760-769.
More about this item
Keywords
Deep eutectic solvent; Nanofluids; Photothermal conversion; Stability; Graphene;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:190:y:2022:i:c:p:935-944. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.