IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp704-716.html
   My bibliography  Save this article

Comparative techno-economic modelling of large-scale thermochemical biohydrogen production technologies to fuel public buses: A case study of West Midlands region of England

Author

Listed:
  • Nouwe Edou, Danielle J.
  • Onwudili, Jude A.

Abstract

This work presents techno-economic modelling of four thermochemical technologies that could produce over 22,000 tonnes/year of hydrogen from biomass for >2000 public transport buses in West Midlands region, UK. These included fluidised bed (FB) gasification, fast pyrolysis-FB gasification, fast pyrolysis-steam reforming, and steam reforming of biogas from anaerobic digestion (AD). Each plant was modelled on ASPEN plus with and without carbon capture and storage (CCS), and their process flow diagrams, mass and energy balances used for economic modelling. Payback periods ranged from 5.10 to 7.18 years. For operations with CCS, in which the captured CO2 was sold, FB gasification gave the lowest minimum hydrogen selling price of $3.40/kg. This was followed by AD-biogas reforming ($4.20/kg), while pyrolysis-gasification and pyrolysis-reforming gave $4.83/kg and $7.30/kg, respectively. Hydrogen selling prices were sensitive to raw material costs and internal rates of return, while revenue from selling CO2 was very important to make biohydrogen production cost competitive. FB gasification and AD-biogas reforming with CCS could deliver hydrogen at less than or around $4/kg when CO2 was sold at above $75/tonne. This study showed that thermochemical technologies could produce biohydrogen at competitive prices to extend the current use of electrolytic hydrogen-fuelled buses in Birmingham to the wider West Midlands region.

Suggested Citation

  • Nouwe Edou, Danielle J. & Onwudili, Jude A., 2022. "Comparative techno-economic modelling of large-scale thermochemical biohydrogen production technologies to fuel public buses: A case study of West Midlands region of England," Renewable Energy, Elsevier, vol. 189(C), pages 704-716.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:704-716
    DOI: 10.1016/j.renene.2022.02.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    2. Ji-chao, Yang & Sobhani, Behrooz, 2021. "Integration of biomass gasification with a supercritical CO2 and Kalina cycles in a combined heating and power system: A thermodynamic and exergoeconomic analysis," Energy, Elsevier, vol. 222(C).
    3. Wang, Yinglong & Li, Guoxuan & Liu, Zhiqiang & Cui, Peizhe & Zhu, Zhaoyou & Yang, Sheng, 2019. "Techno-economic analysis of biomass-to-hydrogen process in comparison with coal-to-hydrogen process," Energy, Elsevier, vol. 185(C), pages 1063-1075.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
    2. Cai, Jianhui & Fei, Jiaming & Li, Liguang & Fei, Cheng & Maghsoudniazi, Mohammadhadi & Su, Zhanguo, 2023. "Multicriteria study of geothermal trigeneration systems with configurations of hybrid vapor compression refrigeration and Kalina cycles for sport arena application," Renewable Energy, Elsevier, vol. 219(P1).
    3. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    4. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    5. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    6. Moosazadeh, Mohammad & Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2023. "Techno-economic feasibility and environmental impact evaluation of a hybrid solar thermal membrane-based power desalination system," Energy, Elsevier, vol. 278(PA).
    7. Wijayasekera, Sachindra Chamode & Hewage, Kasun & Hettiaratchi, Patrick & Razi, Faran & Sadiq, Rehan, 2023. "Planning and development of waste-to-hydrogen conversion facilities: A parametric analysis," Energy, Elsevier, vol. 278(PA).
    8. Guo, Shenghui & Meng, Fanrui & Peng, Pai & Xu, Jialing & Jin, Hui & Chen, Yunan & Guo, Liejin, 2022. "Thermodynamic analysis of the superiority of the direct mass transfer design in the supercritical water gasification system," Energy, Elsevier, vol. 244(PA).
    9. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    11. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 2020. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 359-381.
    12. Andrew William Ruttinger & Miyuru Kannangara & Jalil Shadbahr & Phil De Luna & Farid Bensebaa, 2021. "How CO 2 -to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, October.
    13. Zhong, Yingzi & Han, Weiqiang & Jin, Chao & Tian, Xiaocong & Liu, Haifeng, 2022. "Study on effects of the hydroxyl group position and carbon chain length on combustion and emission characteristics of Reactivity Controlled Compression Ignition (RCCI) engine fueled with low-carbon st," Energy, Elsevier, vol. 239(PC).
    14. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    15. Fan, Jing-Li & Yu, Pengwei & Li, Kai & Xu, Mao & Zhang, Xian, 2022. "A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China," Energy, Elsevier, vol. 242(C).
    16. Min Zhang & Yan Qiu & Chunling Li & Tao Cui & Mingxing Yang & Jun Yan & Wu Yang, 2023. "A Habitable Earth and Carbon Neutrality: Mission and Challenges Facing Resources and the Environment in China—An Overview," IJERPH, MDPI, vol. 20(2), pages 1-35, January.
    17. Wenyue Zhou & Lingying Pan & Xiaohui Mao, 2023. "Optimization and Comparative Analysis of Different CCUS Systems in China: The Case of Shanxi Province," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    18. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:704-716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.