IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p776-797.html
   My bibliography  Save this article

Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling

Author

Listed:
  • Fuentes, R.
  • Dwyer-Joyce, R.S.
  • Marshall, M.B.
  • Wheals, J.
  • Cross, E.J.

Abstract

Bearings are the culprit of a large quantity of Wind Turbine (WT) gearbox failures and account for a high percentage of the total of global WT downtime. Damage within rolling element bearings have been shown to initiate beneath the surface which defies detection by conventional vibration monitoring as the geometry of the rolling surface is unaltered. However, once bearing damage reaches the surface, it generates spalling and quickly drives the deterioration of the entire gearbox through the introduction of debris into the oil system. There is a pressing need for performing damage detection before damage reaches the bearing surface. This paper presents a methodology for detecting sub-surface damage using Acoustic Emission (AE) measurements. AE measurements are well known for their sensitivity to incipient damage. However, the background noise and operational variations within a bearing necessitate the use of a principled statistical procedure for damage detection. This is addressed here through the use of probabilistic modelling, more specifically Gaussian mixture models. The methodology is validated using a full-scale rig of a WT bearing. The bearings are seeded with sub-surface and early-stage surface defects in order to provide a comparison of the detectability at each level of a fault progression.

Suggested Citation

  • Fuentes, R. & Dwyer-Joyce, R.S. & Marshall, M.B. & Wheals, J. & Cross, E.J., 2020. "Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling," Renewable Energy, Elsevier, vol. 147(P1), pages 776-797.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:776-797
    DOI: 10.1016/j.renene.2019.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119312066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murray Aitkin & David Clayton, 1980. "The Fitting of Exponential, Weibull and Extreme Value Distributions to Complex Censored Survival Data Using Glim," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 156-163, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ziqi & Liu, Changliang & Yan, Feng, 2022. "Condition monitoring of wind turbine based on incremental learning and multivariate state estimation technique," Renewable Energy, Elsevier, vol. 184(C), pages 343-360.
    2. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    3. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Powers, Daniel A. & Yun, Myeong-Su, 2009. "Multivariate Decomposition for Hazard Rate Models," IZA Discussion Papers 3971, Institute of Labor Economics (IZA).
    2. Orbe, Jesus & Nunez-Anton, Vicente, 2006. "Alternative approaches to study lifetime data under different scenarios: from the PH to the modified semiparametric AFT model," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1565-1582, March.
    3. A. J. Scallan, 1999. "Regression modelling of interval-censored failure time data using the Weibull distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(5), pages 613-618.
    4. Trond Petersen, 1986. "Estimating Fully Parametric Hazard Rate Models with Time-Dependent Covariates," Sociological Methods & Research, , vol. 14(3), pages 219-246, February.
    5. Hanley James A & Miettinen Olli S, 2009. "Fitting Smooth-in-Time Prognostic Risk Functions via Logistic Regression," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-25, January.
    6. Orbe Lizundia, Jesús María, 2000. "Un Modelo Lineal Generalizado Semiparametrico para Analisis de Duracion con Censura," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    7. M. M. Shoukri & M. Attanasio & J. M. Sargeant, 1998. "Parametric versus semi-parametric models for the analysis of correlated survival data: A case study in veterinary epidemiology," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(3), pages 357-374.
    8. Irit Aitkin, "undated". "The effect of missing data on covariates in survival analysis," Australasian Stata Users' Group Meetings 2004 6, Stata Users Group.
    9. A. J. Scallan, 1999. "Fitting a mixture distribution to complex censored survival data using generalized linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 747-753.
    10. Thomas R. Fleming & D. Y. Lin, 2000. "Survival Analysis in Clinical Trials: Past Developments and Future Directions," Biometrics, The International Biometric Society, vol. 56(4), pages 971-983, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:776-797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.