IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp866-876.html
   My bibliography  Save this article

Wake scaling of actuator discs in different aspect ratios

Author

Listed:
  • Huang, Ming
  • Ferreira, Carlos
  • Sciacchitano, Andrea
  • Scarano, Fulvio

Abstract

The wake recovery from planar porous actuators that surrogate the effect of wind turbines is investigated, focusing on rectangular shapes for vertical axis wind turbines (VAWTs). We proposed an effective mixing diameter D∗ to scale the streamwise momentum recovery for actuators of arbitrary shape. The length-scale D∗ is given by the ratio between frontal area and disc perimeter characterising the wake-freestream interface, whereby the momentum loss and the turbulent exchange of momentum take place. Wind tunnel experiments of planar actuators from porous plates are presented. The three-dimensional development of the wake is surveyed up to six widths/diameters downstream of the actuators making use of robotic particle image velocimetry with helium-filled soap bubbles as flow tracers. The recovery rate analysis is performed using D∗ for wake normalisation. The scaled wake data agrees well among actuators in different shapes. And it is significantly improved for rectangular actuators, comparing with existing scaling lengths. The flow behaviour is confirmed with numerical simulations of VAWT wakes with different aspect ratios, indicating the validity of this scaling concept for wind turbine wake modelling.

Suggested Citation

  • Huang, Ming & Ferreira, Carlos & Sciacchitano, Andrea & Scarano, Fulvio, 2022. "Wake scaling of actuator discs in different aspect ratios," Renewable Energy, Elsevier, vol. 183(C), pages 866-876.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:866-876
    DOI: 10.1016/j.renene.2021.11.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812101627X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines," Renewable Energy, Elsevier, vol. 68(C), pages 876-892.
    2. Yu, W. & Ferreira, C. & van Kuik, G.A.M., 2019. "The dynamic wake of an actuator disc undergoing transient load: A numerical and experimental study," Renewable Energy, Elsevier, vol. 132(C), pages 1402-1414.
    3. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
    4. Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
    5. Lam, H.F. & Peng, H.Y., 2017. "Development of a wake model for Darrieus-type straight-bladed vertical axis wind turbines and its application to micro-siting problems," Renewable Energy, Elsevier, vol. 114(PB), pages 830-842.
    6. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    7. Mahdi Abkar, 2018. "Theoretical Modeling of Vertical-Axis Wind Turbine Wakes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Guoqiang & Li, Yan & Tagawa, Kotaro & Feng, Fang, 2023. "Effects of blade airfoil chord length and rotor diameter on aerodynamic performance of straight-bladed vertical axis wind turbines by numerical simulation," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Zhikun & Chen, Yaoran & Zhou, Dai & Su, Jie & Han, Zhaolong & Cao, Yong & Bao, Yan & Zhao, Feng & Wang, Rui & Zhao, Yongsheng & Xu, Yuwang, 2022. "The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method," Energy, Elsevier, vol. 239(PE).
    2. Lo Brutto, Ottavio A. & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2017. "Assessing the effectiveness of a global optimum strategy within a tidal farm for power maximization," Applied Energy, Elsevier, vol. 204(C), pages 653-666.
    3. Durán Medina, Olmo & Schmitt, François G. & Calif, Rudy & Germain, Grégory & Gaurier, Benoît, 2017. "Turbulence analysis and multiscale correlations between synchronized flow velocity and marine turbine power production," Renewable Energy, Elsevier, vol. 112(C), pages 314-327.
    4. Ahmadi, Mohammad H.B., 2019. "Influence of upstream turbulence on the wake characteristics of a tidal stream turbine," Renewable Energy, Elsevier, vol. 132(C), pages 989-997.
    5. Myriam Slama & Camille Choma Bex & Grégory Pinon & Michael Togneri & Iestyn Evans, 2021. "Lagrangian Vortex Computations of a Four Tidal Turbine Array: An Example Based on the NEPTHYD Layout in the Alderney Race," Energies, MDPI, vol. 14(13), pages 1-23, June.
    6. Razi, P. & Ramaprabhu, P. & Tarey, P. & Muglia, M. & Vermillion, C., 2022. "A low-order wake interaction modeling framework for the performance of ocean current turbines under turbulent conditions," Renewable Energy, Elsevier, vol. 200(C), pages 1602-1617.
    7. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    8. Lo Brutto, Ottavio A. & Nguyen, Van Thinh & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2016. "Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio," Renewable Energy, Elsevier, vol. 99(C), pages 347-359.
    9. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    10. Tian, Wenlong & Ni, Xiwen & Mao, Zhaoyong & Zhang, Tianqi, 2020. "Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine," Renewable Energy, Elsevier, vol. 158(C), pages 37-48.
    11. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    12. Carwyn Frost & Ian Benson & Penny Jeffcoate & Björn Elsäßer & Trevor Whittaker, 2018. "The Effect of Control Strategy on Tidal Stream Turbine Performance in Laboratory and Field Experiments," Energies, MDPI, vol. 11(6), pages 1-16, June.
    13. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    14. Jiyong Lee & Mirko Musa & Chris Feist & Jinjin Gao & Lian Shen & Michele Guala, 2019. "Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(19), pages 1-20, September.
    15. Clemente Gotelli & Mirko Musa & Michele Guala & Cristián Escauriaza, 2019. "Experimental and Numerical Investigation of Wake Interactions of Marine Hydrokinetic Turbines," Energies, MDPI, vol. 12(16), pages 1-17, August.
    16. Garcia Novo, Patxi & Kyozuka, Yusaku, 2020. "Validation of a turbulence numerical 3D model for an open channel with strong tidal currents," Renewable Energy, Elsevier, vol. 162(C), pages 993-1004.
    17. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    18. Thiébaut, Maxime & Filipot, Jean-François & Maisondieu, Christophe & Damblans, Guillaume & Duarte, Rui & Droniou, Eloi & Chaplain, Nicolas & Guillou, Sylvain, 2020. "A comprehensive assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves," Energy, Elsevier, vol. 191(C).
    19. Sutherland, Duncan & Ordonez-Sanchez, Stephanie & Belmont, Michael R. & Moon, Ian & Steynor, Jeffrey & Davey, Thomas & Bruce, Tom, 2018. "Experimental optimisation of power for large arrays of cross-flow tidal turbines," Renewable Energy, Elsevier, vol. 116(PA), pages 685-696.
    20. Wang, Longyan & Xu, Jian & Luo, Wei & Luo, Zhaohui & Xie, Junhang & Yuan, Jianping & Tan, Andy C.C., 2022. "A deep learning-based optimization framework of two-dimensional hydrofoils for tidal turbine rotor design," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:866-876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.