IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp586-600.html
   My bibliography  Save this article

Optimal design of an axisymmetric two-body wave energy converter with translational hydraulic power take-off system

Author

Listed:
  • Kamarlouei, Mojtaba
  • Gaspar, J.F.
  • Guedes Soares, C.

Abstract

An optimized concept of axisymmetric concentric two-body wave energy converter is proposed, consisting of a torus and a floater, which are outer and inner bodies, respectively. The energy extraction is based on the relative motion of the bodies, which is the heave motion. The hydrodynamic characteristics of the two-body system are analyzed in the frequency-domain to evaluate the efficiency in sub-optimal conditions and an extended coupled hydrodynamic model is developed in the frequency and time-domain. To obtain the hydrodynamic coefficients of the two bodies, an open-source boundary element method code is used. The code is validated with the results of a similar concept. The time-domain model and simulator are developed based on the hydrodynamic coefficients calculated in the frequency-domain. A simplified power take-off system including a realistic hydraulic cylinder is modeled in the time domain and used for the optimization process. The optimization considers the hydrodynamic efficiency of different torus shapes and maximizing the pressure and power in the hydraulic power take-off system. The results show that the cone shape torus presents higher efficiency while the max-mean power ratio of the wave energy converter is compared in different cylinder sizes with optimal power take-off parameters.

Suggested Citation

  • Kamarlouei, Mojtaba & Gaspar, J.F. & Guedes Soares, C., 2022. "Optimal design of an axisymmetric two-body wave energy converter with translational hydraulic power take-off system," Renewable Energy, Elsevier, vol. 183(C), pages 586-600.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:586-600
    DOI: 10.1016/j.renene.2021.10.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berenjkoob, Mahdi Nazari & Ghiasi, Mahmoud & Soares, C.Guedes, 2021. "Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion," Energy, Elsevier, vol. 214(C).
    2. Calvário, M. & Gaspar, J.F. & Kamarlouei, M. & Hallak, T.S. & Guedes Soares, C., 2020. "Oil-hydraulic power take-off concept for an oscillating wave surge converter," Renewable Energy, Elsevier, vol. 159(C), pages 1297-1309.
    3. Paula B. Garcia-Rosa & Giorgio Bacelli & John V. Ringwood, 2015. "Control-Informed Geometric Optimization of Wave Energy Converters: The Impact of Device Motion and Force Constraints," Energies, MDPI, vol. 8(12), pages 1-16, December.
    4. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Soares, C. Guedes, 2018. "Design tradeoffs of an oil-hydraulic power take-off for wave energy converters," Renewable Energy, Elsevier, vol. 129(PA), pages 245-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yao & Chen, Weimin & Zhang, Xinshu & Dong, Guoxiang & Jiang, Jinhui, 2023. "Wave energy conversion using heaving oscillator inside ship: Conceptual design, mathematical model and parametric study," Renewable Energy, Elsevier, vol. 219(P2).
    2. He, Lipeng & Liu, Renwen & Liu, Xuejin & Zhang, Zheng & Zhang, Limin & Cheng, Guangming, 2023. "A novel piezoelectric wave energy harvester based on cylindrical-conical buoy structure and magnetic coupling," Renewable Energy, Elsevier, vol. 210(C), pages 397-407.
    3. Rony, J.S. & Karmakar, D., 2024. "Hydrodynamic response analysis of a hybrid TLP and heaving-buoy wave energy converter with PTO damping," Renewable Energy, Elsevier, vol. 226(C).
    4. Li, Ai-jun & Liu, Yong & Wang, Xin-yu, 2022. "Hydrodynamic performance of a horizontal cylinder wave energy converter in front of a partially reflecting vertical wall," Renewable Energy, Elsevier, vol. 194(C), pages 1034-1047.
    5. Han, Meng & Cao, Feifei & Shi, Hongda & Zhu, Kai & Dong, Xiaochen & Li, Demin, 2023. "Layout optimisation of the two-body heaving wave energy converter array," Renewable Energy, Elsevier, vol. 205(C), pages 410-431.
    6. Chen, Xianzhi & Lu, Yunfei & Zhou, Songlin & Chen, Weixing, 2024. "Design, modeling and performance analysis of a deformable double-float wave energy converter for AUVs," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kunlin & Wang, Zhe & Sheng, Songwei & Zhang, Yaqun & Wang, Zhenpeng & Ye, Yin & Wang, Wensheng & Lin, Hongjun & Huang, Zhenxin, 2023. "A method for large-scale WEC connecting to island isolated microgrid based on multiple small power HPGSs," Renewable Energy, Elsevier, vol. 218(C).
    2. Erfan Amini & Danial Golbaz & Fereidoun Amini & Meysam Majidi Nezhad & Mehdi Neshat & Davide Astiaso Garcia, 2020. "A Parametric Study of Wave Energy Converter Layouts in Real Wave Models," Energies, MDPI, vol. 13(22), pages 1-23, November.
    3. He, Zechen & Ning, Dezhi & Gou, Ying & Zhou, Zhimin, 2022. "Wave energy converter optimization based on differential evolution algorithm," Energy, Elsevier, vol. 246(C).
    4. Wang, LiGuo & Ringwood, John V., 2021. "Control-informed ballast and geometric optimisation of a three-body hinge-barge wave energy converter using two-layer optimisation," Renewable Energy, Elsevier, vol. 171(C), pages 1159-1170.
    5. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    6. Yubo Niu & Xingyuan Gu & Xuhui Yue & Yang Zheng & Peijie He & Qijuan Chen, 2022. "Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-15, February.
    7. Chenglong Li & Dahai Zhang & Weijie Zhang & Xiaodong Liu & Ming Tan & Yulin Si & Peng Qian, 2021. "A Constant-Pressure Hydraulic PTO System for a Wave Energy Converter Based on a Hydraulic Transformer and Multi-Chamber Cylinder," Energies, MDPI, vol. 15(1), pages 1-18, December.
    8. Bubbar, K. & Buckham, B., 2018. "On establishing an analytical power capture limit for self-reacting point absorber wave energy converters based on dynamic response," Applied Energy, Elsevier, vol. 228(C), pages 324-338.
    9. Wang, LiGuo & Lin, MaoFeng & Tedeschi, Elisabetta & Engström, Jens & Isberg, Jan, 2020. "Improving electric power generation of a standalone wave energy converter via optimal electric load control," Energy, Elsevier, vol. 211(C).
    10. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    11. Calvário, M. & Gaspar, J.F. & Kamarlouei, M. & Hallak, T.S. & Guedes Soares, C., 2020. "Oil-hydraulic power take-off concept for an oscillating wave surge converter," Renewable Energy, Elsevier, vol. 159(C), pages 1297-1309.
    12. Tiesheng Liu & Yanjun Liu & Shuting Huang & Gang Xue, 2022. "Shape Optimization of Oscillating Buoy Wave Energy Converter Based on the Mean Annual Power Prediction Model," Energies, MDPI, vol. 15(20), pages 1-19, October.
    13. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    14. Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.
    15. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    16. Yu, Tongshun & Chen, Xingyu & Tang, Yuying & Wang, Junrong & Wang, Yuqiao & Huang, Shuting, 2023. "Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters," Applied Energy, Elsevier, vol. 344(C).
    17. Liang, Hongjian & Qin, Hao & Su, Haowen & Wen, Zhixuan & Mu, Lin, 2024. "Environmental-Sensing and adaptive optimization of wave energy converter based on deep reinforcement learning and computational fluid dynamics," Energy, Elsevier, vol. 297(C).
    18. Gao, Hong & Xiao, Jie & Liang, Ruizhi, 2024. "Capture mechanism of a multi-dimensional wave energy converter with a strong coupling parallel drive," Applied Energy, Elsevier, vol. 361(C).
    19. Rosati, Marco & Ringwood, John V., 2023. "Control co-design of power take-off and bypass valve for OWC-based wave energy conversion systems," Renewable Energy, Elsevier, vol. 219(P2).
    20. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:586-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.