IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp193-202.html
   My bibliography  Save this article

Model predictive control based on deep learning for solar parabolic-trough plants

Author

Listed:
  • Ruiz-Moreno, Sara
  • Frejo, José Ramón D.
  • Camacho, Eduardo F.

Abstract

In solar parabolic-trough plants, the use of Model Predictive Control (MPC) increases the output thermal power. However, MPC has the disadvantage of a high computational demand that hinders its application to some processes. This work proposes using artificial neural networks to approximate the optimal flow rate given by an MPC controller to decrease the computational load drastically to a 3% of the MPC computation time. The neural networks have been trained using a 30-day synthetic dataset of a collector field controlled by MPC. The use of a different number of measurements as inputs to the network has been analyzed. The results show that the neural network controllers provide practically the same mean power as the MPC controller with differences under 0.02 kW for most neural networks, less abrupt changes at the output and slight violations of the constraints. Moreover, the proposed neural networks perform well, even using a low number of sensors and predictions, decreasing the number of neural network inputs to 10% of the original size.

Suggested Citation

  • Ruiz-Moreno, Sara & Frejo, José Ramón D. & Camacho, Eduardo F., 2021. "Model predictive control based on deep learning for solar parabolic-trough plants," Renewable Energy, Elsevier, vol. 180(C), pages 193-202.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:193-202
    DOI: 10.1016/j.renene.2021.08.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121012180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kebir, Anouer & Woodward, Lyne & Akhrif, Ouassima, 2019. "Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control," Renewable Energy, Elsevier, vol. 134(C), pages 914-926.
    2. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    3. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Max Pargmann & Jan Ebert & Markus Götz & Daniel Maldonado Quinto & Robert Pitz-Paal & Stefan Kesselheim, 2024. "Automatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Velarde, Pablo & Gallego, Antonio J. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Scenario-based model predictive control for energy scheduling in a parabolic trough concentrating solar plant with thermal storage," Renewable Energy, Elsevier, vol. 206(C), pages 1228-1238.
    3. Gholaminejad, Tahereh & Khaki-Sedigh, Ali, 2022. "Stable deep Koopman model predictive control for solar parabolic-trough collector field," Renewable Energy, Elsevier, vol. 198(C), pages 492-504.
    4. Song, Yuhui & Wang, Jiaxing & Zhang, Junli & Li, Yiguo, 2024. "Temperature homogenization control of parabolic trough solar collector field based on hydraulic calculation and extended Kalman filter," Renewable Energy, Elsevier, vol. 226(C).
    5. Sánchez-Amores, Ana & Martinez-Piazuelo, Juan & Maestre, José M. & Ocampo-Martinez, Carlos & Camacho, Eduardo F. & Quijano, Nicanor, 2023. "Coalitional model predictive control of parabolic-trough solar collector fields with population-dynamics assistance," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    2. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    3. Fu, Qianmei & Ding, Jing & Lao, Jiewei & Wang, Weilong & Lu, Jianfeng, 2019. "Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage," Applied Energy, Elsevier, vol. 247(C), pages 594-604.
    4. Yang, Honglun & Wang, Qiliang & Huang, Xiaona & Li, Jing & Pei, Gang, 2018. "Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers," Energy, Elsevier, vol. 145(C), pages 206-216.
    5. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    7. Yang, Song & Wang, Jun & Lund, Peter D. & Jiang, Chuan & Liu, Deli, 2018. "Assessing the impact of optical errors in a novel 2-stage dish concentrator using Monte-Carlo ray-tracing simulation," Renewable Energy, Elsevier, vol. 123(C), pages 603-615.
    8. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    9. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    10. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    11. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    12. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
    13. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    14. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    15. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    16. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    17. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    18. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    20. Μichalena, Evanthie & Hills, Jeremy M., 2012. "Renewable energy issues and implementation of European energy policy: The missing generation?," Energy Policy, Elsevier, vol. 45(C), pages 201-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:193-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.