IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp1101-1113.html
   My bibliography  Save this article

A methodology to estimate average flow rates in Water Supply Systems (WSSs) for energy recovery purposes through hydropower solutions

Author

Listed:
  • Rossi, Mosè
  • Spedaletti, Samuele
  • Lorenzetti, Matteo
  • Salvi, Danilo
  • Renzi, Massimiliano
  • Comodi, Gabriele
  • Caresana, Flavio
  • Pelagalli, Leonardo

Abstract

Energy efficiency interventions in Water Supply Systems (WSSs) need a precise evaluation of the available water flow rates for energy recovery interventions; however, flow meters are generally too costly for being installed in all the gravity adduction pipelines of a WSS. This paper presents a methodology for predicting flow rates in gravity adduction pipelines based on the electricity bill consumption. In this study, the predicted average flow rate is 0.0300 m3∗s−1, being 1.64% lower than the real one. A Pelton turbine has been chosen as energy recovery unit for supplying electricity to a pumping station of a preloading tank where the water is treated to make it drinkable. An energy saving of 475.26 (MW∗h)∗year−1 is achieved, which can be also expressed as 88.87 saved Tonnes of Oil Equivalent (TOE) and 204.36 ktCO2 not released into the atmosphere. The gross economic saving due to the installation of the Pelton turbine is equal to 94.29 k€∗year−1 and it can be further increased up to 116.51 k€∗year−1 if the energy efficiency certificates issued by the Italian Authorities are considered. The Payback Period (PBP) of the intervention corresponds to 3 years, and a Net Present Value (NPV) after twenty years is approximately 1.4 M€.

Suggested Citation

  • Rossi, Mosè & Spedaletti, Samuele & Lorenzetti, Matteo & Salvi, Danilo & Renzi, Massimiliano & Comodi, Gabriele & Caresana, Flavio & Pelagalli, Leonardo, 2021. "A methodology to estimate average flow rates in Water Supply Systems (WSSs) for energy recovery purposes through hydropower solutions," Renewable Energy, Elsevier, vol. 180(C), pages 1101-1113.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1101-1113
    DOI: 10.1016/j.renene.2021.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    2. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    3. Kucukali, Serhat, 2010. "Hydropower potential of municipal water supply dams in Turkey: A case study in Ulutan Dam," Energy Policy, Elsevier, vol. 38(11), pages 6534-6539, November.
    4. Lydon, Tracey & Coughlan, Paul & McNabola, Aonghus, 2017. "Pressure management and energy recovery in water distribution networks: Development of design and selection methodologies using three pump-as-turbine case studies," Renewable Energy, Elsevier, vol. 114(PB), pages 1038-1050.
    5. Papapostolou, Christiana M. & Kondili, Emilia M. & Zafirakis, Dimitris P. & Tzanes, Georgios T., 2020. "Sustainable water supply systems for the islands: The integration with the energy problem," Renewable Energy, Elsevier, vol. 146(C), pages 2577-2588.
    6. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.
    7. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    8. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    9. Tumen Ozdil, N. Filiz & Tantekin, Atakan, 2016. "Exergy and exergoeconomic assessments of an electricity production system in a running wastewater treatment plant," Renewable Energy, Elsevier, vol. 97(C), pages 390-398.
    10. Strazzabosco, A. & Conrad, S.A. & Lant, P.A. & Kenway, S.J., 2020. "Expert opinion on influential factors driving renewable energy adoption in the water industry," Renewable Energy, Elsevier, vol. 162(C), pages 754-765.
    11. Jeon, Heungsu & Park, Joo Hoon & Shin, Youhwan & Choi, Minsuk, 2018. "Friction loss and energy recovery of a Pelton turbine for different spear positions," Renewable Energy, Elsevier, vol. 123(C), pages 273-280.
    12. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    13. Vieira, F. & Ramos, H.M., 2008. "Hybrid solution and pump-storage optimization in water supply system efficiency: A case study," Energy Policy, Elsevier, vol. 36(11), pages 4142-4148, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoqing Huang & Xiaoyong Lu & Yuqi Sun & Jingui Yao & Wenxing Zhu, 2022. "A Comprehensive Performance Evaluation of Chinese Energy Supply Chain under “Double-Carbon” Goals Based on AHP and Three-Stage DEA," Sustainability, MDPI, vol. 14(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    2. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    3. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    4. Dariusz Andraka & Wojciech Kruszyński & Jacek Tyniec & Joanna Gwoździej-Mazur & Bartosz Kaźmierczak, 2023. "Practical Aspects of the Energy Efficiency Evaluation of a Water Distribution Network Using Hydrodynamic Modeling—A Case Study," Energies, MDPI, vol. 16(8), pages 1-17, April.
    5. Edmonds, Lawryn & Derby, Melanie & Hill, Mary & Wu, Hongyu, 2021. "Coordinated operation of water and electricity distribution networks with variable renewable energy and distribution locational marginal pricing," Renewable Energy, Elsevier, vol. 177(C), pages 1438-1450.
    6. Kucukali, Serhat & Al Bayatı, Omar & Maraş, H. Hakan, 2021. "Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool," Renewable Energy, Elsevier, vol. 172(C), pages 633-650.
    7. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    8. Telikani, Akbar & Rossi, Mosé & Khajehali, Naghmeh & Renzi, Massimiliano, 2023. "Pumps-as-Turbines’ (PaTs) performance prediction improvement using evolutionary artificial neural networks," Applied Energy, Elsevier, vol. 330(PA).
    9. Helena M. Ramos & Jorge G. Morillo & Juan A. Rodríguez Diaz & Armando Carravetta & Aonghus McNabola, 2021. "Sustainable Water-Energy Nexus towards Developing Countries’ Water Sector Efficiency," Energies, MDPI, vol. 14(12), pages 1-18, June.
    10. Gabriella Balacco & Mario Binetti & Leonardo Caggiani & Michele Ottomanelli, 2021. "A Novel Distributed System of e-Vehicle Charging Stations Based on Pumps as Turbine to Support Sustainable Micromobility," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    11. Kostner, Michael K. & Zanfei, Ariele & Alberizzi, Jacopo C. & Renzi, Massimiliano & Righetti, Maurizio & Menapace, Andrea, 2023. "Micro hydro power generation in water distribution networks through the optimal pumps-as-turbines sizing and control," Applied Energy, Elsevier, vol. 351(C).
    12. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    13. João M. R. Catelas & João F. P. Fernandes & Modesto Pérez-Sánchez & P. Amparo López-Jiménez & Helena M. Ramos & P. J. Costa Branco, 2024. "Energy Efficiency and Stability of Micro-Hydropower PAT-SEIG Systems for DC Off-Grids," Energies, MDPI, vol. 17(6), pages 1-25, March.
    14. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    15. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    16. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Postacchini, Matteo & Di Giuseppe, Elisa & Eusebi, Anna Laura & Pelagalli, Leonardo & Darvini, Giovanna & Cipolletta, Giulia & Fatone, Francesco, 2022. "Energy saving from small-sized urban contexts: Integrated application into the domestic water cycle," Renewable Energy, Elsevier, vol. 199(C), pages 1300-1317.
    18. Le Marre, Maël & Mandin, Philippe & Lanoisellé, Jean-Louis & Zilliox, Erik & Rammal, Farah & Kim, Myeongsub (Mike) & Inguanta, Rosalinda, 2022. "Pumps as turbines regulation study through a decision-support algorithm," Renewable Energy, Elsevier, vol. 194(C), pages 561-570.
    19. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1101-1113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.