IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124010978.html
   My bibliography  Save this article

Optimal planning of hybrid power systems under economic variables and different climatic regions: A case study of Türkiye

Author

Listed:
  • Ozturk, Zafer
  • Terkes, Musa
  • Demirci, Alpaslan

Abstract

Renewable energy-based hybrid power systems (HPS), proposed based on demand in the transition to clean energy-indexed societies, are high-potential investments. However, cost-based optimal sizing and feasibility analyses are complicated due to unforeseen variables and do not guarantee a reliable and robust optimization framework. This study optimizes minimum-cost HPS planning for diverse loads across varied climates and economic conditions, providing holistic comparisons of technical, financial, and environmental viability. According to the analysis, fluctuating economic structure emphasizes that unsubsidized hybrid power system installations are inefficient, the severe imbalance between inflation and interest rates limits the benefits of hybrid power systems and creates an uncertain investment environment for stakeholders. The gradual increase in interest rates to limit inflation has created a more viable renewable energy investment environment, while payback periods are reduced to 7.21 years. Even under identical economic conditions, the renewable fraction of energy in regions with high solar potential can be up to 25 % higher than in regions with less potential. Moreover, payback periods can vary up to 6 years, depending on the variability in solar generation and load profiles. Considering the significant impact of economic uncertainty on HPS investments, optimization plans that reduce investment risks will be helpful to stakeholders.

Suggested Citation

  • Ozturk, Zafer & Terkes, Musa & Demirci, Alpaslan, 2024. "Optimal planning of hybrid power systems under economic variables and different climatic regions: A case study of Türkiye," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124010978
    DOI: 10.1016/j.renene.2024.121029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124010978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.