IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp327-335.html
   My bibliography  Save this article

Myo-inositol promotes lipid production and nutrients removal by microalga under molasses wastewater

Author

Listed:
  • Qiao, Tengsheng
  • Zhao, Yongteng
  • Han, Benyong
  • Li, Tao
  • Zhao, Peng
  • Xu, Jun-Wei
  • Huang, Li
  • Yu, Xuya

Abstract

Microalgae-based wastewater treatment can fulfill the dual roles for biofuel production and wastewater bioremediation. The present study focused on the effects of myo-inositol (MI) on the lipid production of Monoraphidium sp. QLY-1 and nutrients removal of molasses wastewater (MW). The highest microalgal lipid productivity (134.70 mg L−1 d−1) was achieved under 0.5 g L−1 MI treatment, which was 1.35-fold higher than the pure MW group. Besides, the nutrients and metals removal from MW were significantly elevated after applying MI. Mechanism exploration revealed that the algal intracellular protein content, glutathione (GSH) level, and the expressions of key lipogenic genes were significantly elevated, while the carbohydrate content and reactive oxygen species (ROS) level were suppressed in the presence of MI, which provided more precursors and a balanced redox condition for lipid biosynthesis. More importantly, the phytohormones abscisic acid (ABA) and ethylene (ET) contents were significantly improved by MI, which was likely responsible for the promotion of lipid accumulation. This research suggests that MI is a promising stimulant for enhancing microalgal lipid production and wastewater nutrients removal, and contributes to regulating the microalgal lipid accumulation in wastewater using exogenous hormones.

Suggested Citation

  • Qiao, Tengsheng & Zhao, Yongteng & Han, Benyong & Li, Tao & Zhao, Peng & Xu, Jun-Wei & Huang, Li & Yu, Xuya, 2021. "Myo-inositol promotes lipid production and nutrients removal by microalga under molasses wastewater," Renewable Energy, Elsevier, vol. 172(C), pages 327-335.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:327-335
    DOI: 10.1016/j.renene.2021.03.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Ting & Park, Stephen Y. & Li, Yebo, 2013. "Nutrient recovery from wastewater streams by microalgae: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 360-369.
    2. Ju, Jung-Hyun & Ko, Dong-Jin & Heo, Sun-Yeon & Lee, Jong-Jea & Kim, Young-Min & Lee, Bong-Soo & Kim, Min-Soo & Kim, Chul-Ho & Seo, Jeong-Woo & Oh, Beak-Rock, 2020. "Regulation of lipid accumulation using nitrogen for microalgae lipid production in Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 153(C), pages 580-587.
    3. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yongteng & Qiao, Tengsheng & Gu, Dan & Zhu, Liyan & Yu, Xuya, 2022. "Stimulating biolipid production from the novel alga Ankistrodesmus sp. by coupling salt stress and chemical induction," Renewable Energy, Elsevier, vol. 183(C), pages 480-490.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    2. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    3. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    4. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    5. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    6. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    8. Thi Dong Phuong Nguyen & Duc Huy Nguyen & Jun Wei Lim & Chih-Kai Chang & Hui Yi Leong & Thi Ngoc Thu Tran & Thi Bich Hau Vu & Thi Trung Chinh Nguyen & Pau Loke Show, 2019. "Investigation of the Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae Chlorella Vulgaris in Seafood Wastewater," Energies, MDPI, vol. 12(12), pages 1-12, June.
    9. Selvaratnam, T. & Henkanatte-Gedera, S.M. & Muppaneni, T. & Nirmalakhandan, N. & Deng, S. & Lammers, P.J., 2016. "Maximizing recovery of energy and nutrients from urban wastewaters," Energy, Elsevier, vol. 104(C), pages 16-23.
    10. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    11. Oliveira, Verónica & Kirkelund, Gunvor M. & Horta, Carmo & Labrincha, João & Dias-Ferreira, Celia, 2019. "Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies," Applied Energy, Elsevier, vol. 247(C), pages 182-189.
    12. Andrade, L.A. & Batista, F.R.X. & Lira, T.S. & Barrozo, M.A.S. & Vieira, L.G.M., 2018. "Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii," Renewable Energy, Elsevier, vol. 119(C), pages 731-740.
    13. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    14. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    15. Giovanna Salbitani & Simona Carfagna, 2021. "Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    16. Ana L. Gonçalves & Maria C. M. Alvim-Ferraz & Fernando G. Martins & Manuel Simões & José C. M. Pires, 2016. "Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment," Energies, MDPI, vol. 9(4), pages 1-17, March.
    17. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    18. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    19. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    20. Zeng, Yu & Xie, Tonghui & Li, Panyu & Jian, Banggao & Li, Xiang & Xie, Yi & Zhang, Yongkui, 2018. "Enhanced lipid production and nutrient utilization of food waste hydrolysate by mixed culture of oleaginous yeast Rhodosporidium toruloides and oleaginous microalgae Chlorella vulgaris," Renewable Energy, Elsevier, vol. 126(C), pages 915-923.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:327-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.