IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v166y2020icp56-65.html
   My bibliography  Save this article

From pre-treatment to co-treatment - How successful is ultrasonication of digested sewage sludge in continuously operated anaerobic digesters?

Author

Listed:
  • Lippert, Thomas
  • Bandelin, Jochen
  • Xu, Yunqi
  • Liu, Yu Chen
  • Robles, Gabriel Hernández
  • Drewes, Jörg E.
  • Koch, Konrad

Abstract

The present study assessed the performance of ultrasonic co-treatment, i.e., the treatment of digested sewage sludge in continuously operated anaerobic digesters. Experiments were carried out using a non-sonicated control digester and a sonicated test digester. The test digester received side-stream sonication (∼10% of reactor volume per day) at a specific energy input of 2,000 kJ/kgTS. Treatment effects were monitored based on (i) specific methane production, (ii) (volatile) solids removal, and (iii) digestate dewaterability. Results revealed that co-treatment significantly enhanced average methane production (+6%), volatile solids removal (+9%), and solids reduction in the digestate (−5%). However, due to the only moderate enhancement and the relatively high energy input, the average cost recovery (i.e., the ratio between electricity costs and benefits due to additional methane and improved solids removal) was only 6%–9%, depending on the assumed disposal costs. Moreover, as sonication led to impaired digestate dewaterability (average increase in normalized capillary suction time of 14%), the cost recovery due to reduced residual sludge might be negated again by lower dewatering efficiency. Overall, co-treatment seemed not economical under the conditions investigated. To render co-treatments economically feasible, further research, especially exploring the potential of low energy input sonication, is required.

Suggested Citation

  • Lippert, Thomas & Bandelin, Jochen & Xu, Yunqi & Liu, Yu Chen & Robles, Gabriel Hernández & Drewes, Jörg E. & Koch, Konrad, 2020. "From pre-treatment to co-treatment - How successful is ultrasonication of digested sewage sludge in continuously operated anaerobic digesters?," Renewable Energy, Elsevier, vol. 166(C), pages 56-65.
  • Handle: RePEc:eee:renene:v:166:y:2020:i:c:p:56-65
    DOI: 10.1016/j.renene.2020.11.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    2. Janke, Leandro & Weinrich, Sören & Leite, Athaydes F. & Sträuber, Heike & Nikolausz, Marcell & Nelles, Michael & Stinner, Walter, 2019. "Pre-treatment of filter cake for anaerobic digestion in sugarcane biorefineries: Assessment of batch versus semi-continuous experiments," Renewable Energy, Elsevier, vol. 143(C), pages 1416-1426.
    3. Ormaechea, P. & Castrillón, L. & Suárez-Peña, B. & Megido, L. & Fernández-Nava, Y. & Negral, L. & Marañón, E. & Rodríguez-Iglesias, J., 2018. "Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM," Renewable Energy, Elsevier, vol. 126(C), pages 897-904.
    4. Azman, Samet & Milh, Hannah & Somers, Matthijs H. & Zhang, Huili & Huybrechts, Ine & Meers, Erik & Meesschaert, Boudewijn & Dewil, Raf & Appels, Lise, 2020. "Ultrasound-assisted digestate treatment of manure digestate for increased biogas production in small pilot scale anaerobic digesters," Renewable Energy, Elsevier, vol. 152(C), pages 664-673.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Steindl, Matthias & Dandikas, Vasilis & Lichti, Fabian & Höcherl, Susanne & Koch, Konrad, 2023. "A comprehensive study on the consequences of substituting energy crops by alternative substrates for biogas production in Germany," Renewable Energy, Elsevier, vol. 219(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    2. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    3. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    4. Cristiane Romio & Michael Vedel Wegener Kofoed & Henrik Bjarne Møller, 2021. "Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    5. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    6. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    7. Tsigkou, Konstantina & Tsafrakidou, Panagiota & Zagklis, Dimitris & Panagiotouros, Anastasios & Sionakidis, Dimitris & Zontos, Dimitris Marios & Zafiri, Constantina & Kornaros, Michael, 2021. "Used disposable nappies and expired food products co-digestion: A pilot-scale system assessment," Renewable Energy, Elsevier, vol. 165(P1), pages 109-117.
    8. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Aleksandra Chuda & Konrad Jastrząbek & Krzysztof Ziemiński, 2022. "Changes in the Composition of Digestate Liquid Fraction after Ozone and Ultrasonic Post-Treatment," Energies, MDPI, vol. 15(23), pages 1-15, December.
    10. Elena Rossi & Isabella Pecorini & Renato Iannelli, 2022. "Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion of OFMSW," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    11. Usman, Muhammad & Salama, El-Sayed & Arif, Muhammad & Jeon, Byong-Hun & Li, Xiangkai, 2020. "Determination of the inhibitory concentration level of fat, oil, and grease (FOG) towards bacterial and archaeal communities in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Angelique Mukasine & Louis Sibomana & Kayalvizhi Jayavel & Kizito Nkurikiyeyezu & Eric Hitimana, 2023. "Correlation Analysis Model of Environment Parameters Using IoT Framework in a Biogas Energy Generation Context," Future Internet, MDPI, vol. 15(8), pages 1-14, August.
    13. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    14. Irfan, Muhammad & Zhou, Lei & Ji, Jia-Heng & Chen, Jing & Yuan, Shan & Liang, Tian-Tian & Liu, Jin-Feng & Yang, Shi-Zhong & Gu, Ji-Dong & Mu, Bo-Zhong, 2020. "Enhanced energy generation and altered biochemical pathways in an enrichment microbial consortium amended with natural iron minerals," Renewable Energy, Elsevier, vol. 159(C), pages 585-594.
    15. Matthijs H. Somers & Samet Azman & Ruud Vanhecke & Lise Appels, 2021. "Dairy Manure Digestate Age Increases Ultrasound Disintegration Efficiency at Low Specific Energies," Energies, MDPI, vol. 14(6), pages 1-15, March.
    16. Badr Moutik & John Summerscales & Jasper Graham-Jones & Richard Pemberton, 2023. "Life Cycle Assessment Research Trends and Implications: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(18), pages 1-45, September.
    17. Florin Nenciu & Iustina Stanciulescu & Horia Vlad & Andrei Gabur & Ovidiu Leonard Turcu & Tiberiu Apostol & Valentin Nicolae Vladut & Diana Mariana Cocarta & Constantin Stan, 2022. "Decentralized Processing Performance of Fruit and Vegetable Waste Discarded from Retail, Using an Automated Thermophilic Composting Technology," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    18. Kamil Witaszek & Krzysztof Pilarski & Gniewko Niedbała & Agnieszka Anna Pilarska & Marcin Herkowiak, 2020. "Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    19. Palma-Heredia, D. & Verdaguer, M. & Molinos-Senante, M. & Poch, M. & Cugueró-Escofet, M.À., 2021. "Optimised blending for anaerobic co-digestion using ant colony approach: Besòs river basin case study," Renewable Energy, Elsevier, vol. 168(C), pages 141-150.
    20. Mensah, Johnson Herlich Roslee & Silva, Alex Takeo Yasumura Lima & Santos, Ivan Felipe Silva dos & Ribeiro, Natalia de Souza & Gbedjinou, Michael Jourdain & Nago, Victorien Gerardo & Tiago Filho, Gera, 2021. "Assessment of electricity generation from biogas in Benin from energy and economic viability perspectives," Renewable Energy, Elsevier, vol. 163(C), pages 613-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:166:y:2020:i:c:p:56-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.