IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v165y2021ip1p174-181.html
   My bibliography  Save this article

Liquefaction of biomass by plasma electrolysis in alkaline condition

Author

Listed:
  • Zhang, Xianhui
  • Bo, Chengbin
  • Xi, Dengke
  • Fang, Zhi
  • Feng, Zhe
  • Yang, Si-ze

Abstract

We investigated the discharge characteristics, parameters, water content, and mechanism of liquefying biomass by plasma electrolysis under alkaline conditions. Compared with the liquefaction of sawdust under acidic conditions, the discharge changed from corona to spark discharge, the liquefaction time was a little longer (8 min), and the pondus Hydrogenii (pH) of the bio-oil was 7.54 under sodium hydroxide catalyst. We identified the optimal parameters for sawdust liquefaction by sodium hydroxide, sodium carbonate, and sodium bicarbonate using a single factor method and found that the optimal parameters for sodium hydroxide and carbonate were quite different, apparently because they have different liquefaction mechanisms. When the water content increased, the liquefaction rate remained constant, so the water content prolonged the treatment time but did not affect the liquefaction rate or product quality. To analyze the universality of liquefied cellulose biomass under alkaline conditions, corn cob, rice straw, and cotton were liquefied separately. We found that the liquefaction time increased significantly with an increase in cellulose content. Notably, plasma electrolytic liquefaction efficiently heated the solution and effectively catalyzed the liquefaction of biomass with high energy efficiency, making this a promising biomass conversion technology.

Suggested Citation

  • Zhang, Xianhui & Bo, Chengbin & Xi, Dengke & Fang, Zhi & Feng, Zhe & Yang, Si-ze, 2021. "Liquefaction of biomass by plasma electrolysis in alkaline condition," Renewable Energy, Elsevier, vol. 165(P1), pages 174-181.
  • Handle: RePEc:eee:renene:v:165:y:2021:i:p1:p:174-181
    DOI: 10.1016/j.renene.2020.10.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Sudong & Tan, Zhongchao, 2012. "Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions," Applied Energy, Elsevier, vol. 92(C), pages 234-239.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junying Chen & Lijun Wang & Bo Zhang & Rui Li & Abolghasem Shahbazi, 2018. "Hydrothermal Liquefaction Enhanced by Various Chemicals as a Means of Sustainable Dairy Manure Treatment," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    2. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    3. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.
    4. Argun, Hidayet & Onaran, Gülizar, 2016. "Glucose and 5-hydroxymethylfurfural production from cellulosic waste by sequential alkaline and acid hydrolysis," Renewable Energy, Elsevier, vol. 96(PA), pages 442-449.
    5. Imai, Akihisa & Hardi, Flabianus & Lundqvist, Petter & Furusjö, Erik & Kirtania, Kawnish & Karagöz, Selhan & Tekin, Kubilay & Yoshikawa, Kunio, 2018. "Alkali-catalyzed hydrothermal treatment of sawdust for production of a potential feedstock for catalytic gasification," Applied Energy, Elsevier, vol. 231(C), pages 594-599.
    6. Bai, Jing & Li, Lefei & Chen, Zhiyong & Chang, Chun & Pang, Shusheng & Li, Pan, 2023. "Study on the optimization of hydrothermal liquefaction performance of tobacco stem and the high value utilization of catalytic products," Energy, Elsevier, vol. 281(C).
    7. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    8. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    9. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    10. Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
    11. Hu, Xun & Lievens, Caroline & Mourant, Daniel & Wang, Yi & Wu, Liping & Gunawan, Richard & Song, Yao & Li, Chun-Zhu, 2013. "Investigation of deactivation mechanisms of a solid acid catalyst during esterification of the bio-oils from mallee biomass," Applied Energy, Elsevier, vol. 111(C), pages 94-103.
    12. Hardi, Flabianus & Mäkelä, Mikko & Yoshikawa, Kunio, 2017. "Non-catalytic hydrothermal liquefaction of pine sawdust using experimental design: Material balances and products analysis," Applied Energy, Elsevier, vol. 204(C), pages 1026-1034.
    13. Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).
    14. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    15. Siyuan Yin & Nianze Zhang & Chunyan Tian & Weiming Yi & Qiaoxia Yuan & Peng Fu & Yuchun Zhang & Zhiyu Li, 2021. "Effect of Accumulative Recycling of Aqueous Phase on the Properties of Hydrothermal Degradation of Dry Biomass and Bio-Crude Oil Formation," Energies, MDPI, vol. 14(2), pages 1-19, January.
    16. Feng, Junfeng & Jiang, Jianchun & Xu, Junming & Yang, Zhongzhi & Wang, Kui & Guan, Qian & Chen, Shuigen, 2015. "Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass," Applied Energy, Elsevier, vol. 154(C), pages 520-527.
    17. Gan, Jing & Yuan, Wenqiao, 2013. "Operating condition optimization of corncob hydrothermal conversion for bio-oil production," Applied Energy, Elsevier, vol. 103(C), pages 350-357.
    18. Alejandra Sophia Lozano-Pérez & Carlos Alberto Guerrero-Fajardo, 2024. "Liquid Hot Water (LHW) and Hydrothermal Carbonization (HTC) of Coffee Berry Waste: Kinetics, Catalysis, and Optimization for the Synthesis of Platform Chemicals," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    19. Pedersen, T.H. & Grigoras, I.F. & Hoffmann, J. & Toor, S.S. & Daraban, I.M. & Jensen, C.U. & Iversen, S.B. & Madsen, R.B. & Glasius, M. & Arturi, K.R. & Nielsen, R.P. & Søgaard, E.G. & Rosendahl, L.A., 2016. "Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation," Applied Energy, Elsevier, vol. 162(C), pages 1034-1041.
    20. Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:165:y:2021:i:p1:p:174-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.