Effects of smart meter time resolution when analyzing photovoltaic self-consumption system on a daily and annual basis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.09.096
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Talavera, D.L. & Muñoz-Rodriguez, F.J. & Jimenez-Castillo, G. & Rus-Casas, C., 2019. "A new approach to sizing the photovoltaic generator in self-consumption systems based on cost–competitiveness, maximizing direct self-consumption," Renewable Energy, Elsevier, vol. 130(C), pages 1021-1035.
- Wright, Andrew & Firth, Steven, 2007. "The nature of domestic electricity-loads and effects of time averaging on statistics and on-site generation calculations," Applied Energy, Elsevier, vol. 84(4), pages 389-403, April.
- Haegermark, Maria & Kovacs, Peter & Dalenbäck, Jan-Olof, 2017. "Economic feasibility of solar photovoltaic rooftop systems in a complex setting: A Swedish case study," Energy, Elsevier, vol. 127(C), pages 18-29.
- Jiménez-Castillo, G. & Muñoz-Rodriguez, F.J. & Rus-Casas, C. & Talavera, D.L., 2020. "A new approach based on economic profitability to sizing the photovoltaic generator in self-consumption systems without storage," Renewable Energy, Elsevier, vol. 148(C), pages 1017-1033.
- Fina, Bernadette & Auer, Hans & Friedl, Werner, 2020. "Cost-optimal economic potential of shared rooftop PV in energy communities: Evidence from Austria," Renewable Energy, Elsevier, vol. 152(C), pages 217-228.
- Naspolini, Helena F. & Rüther, Ricardo, 2019. "Impacts of the active power demand measurement-time resolution on the financial attractiveness of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 139(C), pages 336-345.
- Ayala-Gilardón, A. & Sidrach-de-Cardona, M. & Mora-López, L., 2018. "Influence of time resolution in the estimation of self-consumption and self-sufficiency of photovoltaic facilities," Applied Energy, Elsevier, vol. 229(C), pages 990-997.
- Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
- Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
- Cao, Sunliang & Sirén, Kai, 2014. "Impact of simulation time-resolution on the matching of PV production and household electric demand," Applied Energy, Elsevier, vol. 128(C), pages 192-208.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qusay Hassan & Marek Jaszczur, 2021. "Self-Consumption and Self-Sufficiency Improvement for Photovoltaic System Integrated with Ultra-Supercapacitor," Energies, MDPI, vol. 14(23), pages 1-15, November.
- Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
- Kiss, Viktor M. & Hetesi, Zsolt & Kiss, Tibor, 2024. "The effect of time resolution on energy system simulation in case of intermittent energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Ángel José Ordóñez Mendieta & Esteban Sánchez Hernández, 2021. "Analysis of PV Self-Consumption in Educational and Office Buildings in Spain," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiménez-Castillo, G. & Muñoz-Rodriguez, F.J. & Rus-Casas, C. & Talavera, D.L., 2020. "A new approach based on economic profitability to sizing the photovoltaic generator in self-consumption systems without storage," Renewable Energy, Elsevier, vol. 148(C), pages 1017-1033.
- Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
- Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.
- Muñoz-Rodríguez, Francisco José & Jiménez-Castillo, Gabino & de la Casa Hernández, Jesús & Aguilar Peña, Juan Domingo, 2021. "A new tool to analysing photovoltaic self-consumption systems with batteries," Renewable Energy, Elsevier, vol. 168(C), pages 1327-1343.
- Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
- Jaszczur, Marek & Hassan, Qusay & Abdulateef, Ammar M. & Abdulateef, Jasim, 2021. "Assessing the temporal load resolution effect on the photovoltaic energy flows and self-consumption," Renewable Energy, Elsevier, vol. 169(C), pages 1077-1090.
- Karni Siraganyan & Amarasinghage Tharindu Dasun Perera & Jean-Louis Scartezzini & Dasaraden Mauree, 2019. "Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems," Energies, MDPI, vol. 12(5), pages 1-22, February.
- Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
- Gudmunds, D. & Nyholm, E. & Taljegard, M. & Odenberger, M., 2020. "Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle," Renewable Energy, Elsevier, vol. 148(C), pages 1200-1215.
- Ángel José Ordóñez Mendieta & Esteban Sánchez Hernández, 2021. "Analysis of PV Self-Consumption in Educational and Office Buildings in Spain," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
- Nyholm, Emil & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Solar photovoltaic-battery systems in Swedish households – Self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 183(C), pages 148-159.
- Vulic, Natasa & Rüdisüli, Martin & Orehounig, Kristina, 2023. "Evaluating energy flexibility requirements for high shares of variable renewable energy: A heuristic approach," Energy, Elsevier, vol. 270(C).
- Talavera, D.L. & Muñoz-Rodriguez, F.J. & Jimenez-Castillo, G. & Rus-Casas, C., 2019. "A new approach to sizing the photovoltaic generator in self-consumption systems based on cost–competitiveness, maximizing direct self-consumption," Renewable Energy, Elsevier, vol. 130(C), pages 1021-1035.
- Solano, J.C. & Olivieri, L. & Caamaño-Martín, E., 2017. "Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential building through intelligent control," Applied Energy, Elsevier, vol. 206(C), pages 249-266.
- Ferdowsi, Farzad & Mehraeen, Shahab & Upton, Gregory B., 2020. "Assessing distribution network sensitivity to voltage rise and flicker under high penetration of behind-the-meter solar," Renewable Energy, Elsevier, vol. 152(C), pages 1227-1240.
- Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
- Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
- Georg Göhler & Anna-Lena Klingler & Florian Klausmann & Dieter Spath, 2021. "Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study," Energies, MDPI, vol. 14(21), pages 1-19, October.
- Kools, L. & Phillipson, F., 2016. "Data granularity and the optimal planning of distributed generation," Energy, Elsevier, vol. 112(C), pages 342-352.
- Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
More about this item
Keywords
Resolution; Averaging effect; Recording interval; Time resolution; Self-consumption;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:889-896. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.