IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3069-d235887.html
   My bibliography  Save this article

Multi-Objective and Multi-Attribute Optimization for Sustainable Development Decision Aiding

Author

Listed:
  • Edmundas Kazimieras Zavadskas

    (Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio al. 11, Vilnius LT-10223, Lithuania
    Institute of Sustainable Construction, Vilnius Gediminas Technical University, Sauletekio al. 11, Vilnius LT-10223, Lithuania)

  • Jurgita Antucheviciene

    (Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio al. 11, Vilnius LT-10223, Lithuania)

  • Samarjit Kar

    (Department of Mathematics, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India)

Abstract

Optimization is considered as a decision-making process to get the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that are required to be optimized simultaneously, while respecting some constraints or selecting among feasible discrete alternatives. In this Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modelling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate the approaches on the state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management.

Suggested Citation

  • Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene & Samarjit Kar, 2019. "Multi-Objective and Multi-Attribute Optimization for Sustainable Development Decision Aiding," Sustainability, MDPI, vol. 11(11), pages 1-6, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3069-:d:235887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arjomandi, Amin & Mortazavi, Seyed Abolghasem & Khalilian, Sadegh & Garizi, Arash Zare, 2021. "Optimal land-use allocation using MCDM and SWAT for the Hablehroud Watershed, Iran," Land Use Policy, Elsevier, vol. 100(C).
    2. Rabia Yahia Meddah & Tarik Ghodbani & Rachida Senouci & Walid Rabehi & Lia Duarte & Ana Cláudia Teodoro, 2023. "Estimation of the Coastal Vulnerability Index Using Multi-Criteria Decision Making: The Coastal Social–Ecological System of Rachgoun, Western Algeria," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    3. Hassan Hashemi & Parviz Ghoddousi & Farnad Nasirzadeh, 2021. "Sustainability Indicator Selection by a Novel Triangular Intuitionistic Fuzzy Decision-Making Approach in Highway Construction Projects," Sustainability, MDPI, vol. 13(3), pages 1-25, February.
    4. Bing Xia & Jindong Wu & Jiaqi Wang & Yitao Fang & Haodi Shen & Jingli Shen, 2021. "Sustainable Renewal Methods of Urban Public Parking Spaces under the Scenario of Shared Autonomous Vehicles (SAV): A Review and a Proposal," Sustainability, MDPI, vol. 13(7), pages 1-21, March.
    5. Davoudabadi, Reza & Mousavi, Seyed Meysam & Mohagheghi, Vahid, 2021. "A new decision model based on DEA and simulation to evaluate renewable energy projects under interval-valued intuitionistic fuzzy uncertainty," Renewable Energy, Elsevier, vol. 164(C), pages 1588-1601.
    6. Bahareh Nikmehr & M. Reza Hosseini & Igor Martek & Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene, 2021. "Digitalization as a Strategic Means of Achieving Sustainable Efficiencies in Construction Management: A Critical Review," Sustainability, MDPI, vol. 13(9), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    2. Ana Mafalda Matos & João M. P. Q. Delgado & Ana Sofia Guimarães, 2022. "Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview," Energies, MDPI, vol. 15(7), pages 1-20, April.
    3. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    4. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    5. Chen, Ruijun & Tsay, Yaw-Shyan & Zhang, Ting, 2023. "A multi-objective optimization strategy for building carbon emission from the whole life cycle perspective," Energy, Elsevier, vol. 262(PA).
    6. Abir Khechiba & Djamila Djaghrouri & Moussadek Benabbas & Francesco Leccese & Michele Rocca & Giacomo Salvadori, 2023. "Balancing Thermal Comfort and Energy Consumption in Residential Buildings of Desert Areas: Impact of Passive Strategies," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    7. Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Rabani, Mehrdad & Bayera Madessa, Habtamu & Mohseni, Omid & Nord, Natasa, 2020. "Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting case," Applied Energy, Elsevier, vol. 268(C).
    9. Xiaoliang Wang & Bo Lei & Haiquan Bi & Tao Yu, 2019. "Study on the Thermal Performance of a Hybrid Heat Collecting Facade Used for Passive Solar Buildings in Cold Region," Energies, MDPI, vol. 12(6), pages 1-22, March.
    10. Staszczuk, Anna & Kuczyński, Tadeusz, 2021. "The impact of wall and roof material on the summer thermal performance of building in a temperate climate," Energy, Elsevier, vol. 228(C).
    11. Ahsan Waqar & Idris Othman & Nasir Shafiq & Hasim Altan & Bertug Ozarisoy, 2023. "Modeling the Effect of Overcoming the Barriers to Passive Design Implementation on Project Sustainability Building Success: A Structural Equation Modeling Perspective," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
    12. Minghao Zhang & Fang Liu & Qian Liu & Fangyu Zhang & Tingshen Li, 2024. "Climate Adaptation Analysis and Comfort Optimization Strategies for Traditional Residential Buildings in Hot-Summer, Cold-Winter Regions: A Case Study in Xuzhou, China," Sustainability, MDPI, vol. 16(8), pages 1-34, April.
    13. Mehmood, Sajid & Lizana, Jesus & Núñez-Peiró, Miguel & Maximov, Serguey A. & Friedrich, Daniel, 2022. "Resilient cooling pathway for extremely hot climates in southern Asia," Applied Energy, Elsevier, vol. 325(C).
    14. Mehrdad Rabani & Habtamu Bayera Madessa & Natasa Nord, 2021. "Building Retrofitting through Coupling of Building Energy Simulation-Optimization Tool with CFD and Daylight Programs," Energies, MDPI, vol. 14(8), pages 1-23, April.
    15. Li, Hong Xian & Li, Yan & Jiang, Boya & Zhang, Limao & Wu, Xianguo & Lin, Jingyi, 2020. "Energy performance optimisation of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1414-1423.
    16. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    17. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    18. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    19. Staszczuk, A. & Kuczyński, T., 2019. "The impact of floor thermal capacity on air temperature and energy consumption in buildings in temperate climate," Energy, Elsevier, vol. 181(C), pages 908-915.
    20. Belinda López-Mesa & Marta Monzón-Chavarrías & Almudena Espinosa-Fernández, 2020. "Energy Retrofit of Social Housing with Cultural Value in Spain: Analysis of Strategies Conserving the Original Image vs. Coordinating Its Modification," Sustainability, MDPI, vol. 12(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3069-:d:235887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.