IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp122-132.html
   My bibliography  Save this article

Cooling of office buildings in cold climates using direct ground-coupled active chilled beams

Author

Listed:
  • Arghand, Taha
  • Javed, Saqib
  • Trüschel, Anders
  • Dalenbäck, Jan-Olof

Abstract

This study investigates the use of a direct ground cooling system (DGCS) using active chilled beams for the cooling of office buildings in Sweden. The methodology of the study entails laboratory experiments to develop and validate a simulation model of the cooling system. The sensitivity of the input parameters, such as borehole heat exchanger (BHE) length, internal heat gains and room temperature set point, are studied with respect to BHE outlet fluid temperature and room thermal comfort. The results provide a practical insight into designing DGCSs with regard to borehole outlet fluid temperatures. The results also show that the thermal comfort criteria in the room are met by applying the DGCS even under the most critical design conditions of undisturbed ground temperature and internal heat gains. The sensitivity study quantifies the influence of the room temperature setpoint and internal heat gain intensity on the BHE length. The BHE outlet temperature level is more sensitive in shorter BHEs than in the longer ones, and BHE length and room temperature levels are highly correlated. Thus, the sizing of DGCS can benefit from a control system to allow the room temperature to float within a certain range.

Suggested Citation

  • Arghand, Taha & Javed, Saqib & Trüschel, Anders & Dalenbäck, Jan-Olof, 2021. "Cooling of office buildings in cold climates using direct ground-coupled active chilled beams," Renewable Energy, Elsevier, vol. 164(C), pages 122-132.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:122-132
    DOI: 10.1016/j.renene.2020.09.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120314919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    2. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    3. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    4. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    5. Romaní, Joaquim & Cabeza, Luisa F. & Pérez, Gabriel & Pisello, Anna Laura & de Gracia, Alvaro, 2018. "Experimental testing of cooling internal loads with a radiant wall," Renewable Energy, Elsevier, vol. 116(PA), pages 1-8.
    6. Zhou, Zhihua & Zhang, Zhiming & Chen, Guanyi & Zuo, Jian & Xu, Pan & Meng, Chong & Yu, Zhun, 2016. "Feasibility of ground coupled heat pumps in office buildings: A China study," Applied Energy, Elsevier, vol. 162(C), pages 266-277.
    7. Spitler, Jeffrey D. & Javed, Saqib & Ramstad, Randi Kalskin, 2016. "Natural convection in groundwater-filled boreholes used as ground heat exchangers," Applied Energy, Elsevier, vol. 164(C), pages 352-365.
    8. Pahud, D. & Belliardi, M. & Caputo, P., 2012. "Geocooling potential of borehole heat exchangers' systems applied to low energy office buildings," Renewable Energy, Elsevier, vol. 45(C), pages 197-204.
    9. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    10. Eicker, Ursula & Vorschulze, Christoph, 2009. "Potential of geothermal heat exchangers for office building climatisation," Renewable Energy, Elsevier, vol. 34(4), pages 1126-1133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arghand, Taha & Javed, Saqib & Dalenbäck, Jan-Olof, 2023. "Combining direct ground cooling with ground-source heat pumps and district heating: Energy and economic analysis," Energy, Elsevier, vol. 270(C).
    2. Ren, Jing & Liu, Jiying & Zhou, Shiyu & Kim, Moon Keun & Song, Shoujie, 2022. "Experimental study on control strategies of radiant floor cooling system with direct-ground cooling source and displacement ventilation system: A case study in an office building," Energy, Elsevier, vol. 239(PD).
    3. Henrikki Pieskä & Adnan Ploskić & Sture Holmberg & Qian Wang, 2022. "Performance Analysis of a Geothermal Radiant Cooling System Supported by Dehumidification," Energies, MDPI, vol. 15(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    3. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    4. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    5. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Liu, Y. & Qin, X.S. & Chiew, Y.M., 2013. "Investigation on potential applicability of subsurface cooling in Singapore," Applied Energy, Elsevier, vol. 103(C), pages 197-206.
    7. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    8. Bertermann, D. & Klug, H. & Morper-Busch, L., 2015. "A pan-European planning basis for estimating the very shallow geothermal energy potentials," Renewable Energy, Elsevier, vol. 75(C), pages 335-347.
    9. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    10. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    11. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    12. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    13. Shangyuan Chen & Jinfeng Mao & Xu Han & Chaofeng Li & Liyao Liu, 2016. "Numerical Analysis of the Factors Influencing a Vertical U-Tube Ground Heat Exchanger," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    14. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    15. Li, Min & Lai, Alvin C.K., 2012. "Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers," Applied Energy, Elsevier, vol. 96(C), pages 451-458.
    16. Michopoulos, A. & Papakostas, K.T. & Kyriakis, N., 2011. "Potential of autonomous ground-coupled heat pump system installations in Greece," Applied Energy, Elsevier, vol. 88(6), pages 2122-2129, June.
    17. Yıldız, Ahmet & Ozgener, Onder & Ozgener, Leyla, 2012. "Energetic performance analysis of a solar photovoltaic cell (PV) assisted closed loop earth-to-air heat exchanger for solar greenhouse cooling: An experimental study for low energy architecture in Aeg," Renewable Energy, Elsevier, vol. 44(C), pages 281-287.
    18. McKenna, P. & Turner, W.J.N. & Finn, D.P., 2018. "Geocooling with integrated PCM thermal energy storage in a commercial building," Energy, Elsevier, vol. 144(C), pages 865-876.
    19. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    20. Hakkaki-Fard, Ali & Eslami-Nejad, Parham & Aidoun, Zine & Ouzzane, Mohamed, 2015. "A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates," Energy, Elsevier, vol. 87(C), pages 49-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:122-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.