IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp1682-1691.html
   My bibliography  Save this article

Multi-parametric evaluation of electrical, biogas and natural gas geothermal source heat pumps

Author

Listed:
  • Blázquez, Cristina Sáez
  • Borge-Diez, David
  • Nieto, Ignacio Martín
  • Martín, Arturo Farfán
  • González-Aguilera, Diego

Abstract

The use of low-impact energy sources is gradually growing with the aim of reducing greenhouse gases emission and air pollution. The alternatives offered by geothermal systems are one of the key solutions for a future renewable development, enabling the electrification of heating systems and the use of biofuels. This research addresses an overview of geothermal heating systems using ground source heat pumps in different European countries. Besides the traditional electrical heat pumps, gas engine heat pumps aided by natural gas or biogas are analysed in three areas. From a previous research, the technical parameters defining the geothermal system are used here to evaluate the most appropriate system in each scenario. The evaluation of different influential factors (operational costs, initial investment, environmental impact, and availability) allows defining the most recommendable systems for each area. Results of this multi-parametric study show that gas engine heat pumps aided by biogas could mean an excellent solution in all countries, also contributing to the management of waste and polluting substances. If biogas systems were not available, the electrical heat pump would be the first option for areas 1 and 3 (Italy and Sweden) but not for area 2 (United Kingdom), where natural gas is preferred.

Suggested Citation

  • Blázquez, Cristina Sáez & Borge-Diez, David & Nieto, Ignacio Martín & Martín, Arturo Farfán & González-Aguilera, Diego, 2021. "Multi-parametric evaluation of electrical, biogas and natural gas geothermal source heat pumps," Renewable Energy, Elsevier, vol. 163(C), pages 1682-1691.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1682-1691
    DOI: 10.1016/j.renene.2020.10.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    2. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciulla, Giuseppina & Guarino, Stefania & Lanchi, Michela & D'Auria, Marco & De Lucia, Maurizio & Salvestroni, Michele & Di Dio, Vincenzo, 2023. "Hybridization solutions for solar dish systems installed in the Mediterranean region," Renewable Energy, Elsevier, vol. 217(C).
    2. Andrey A. Kovalev & Dmitriy A. Kovalev & Victor S. Grigoriev & Vladimir Panchenko, 2022. "Heat Recovery of Low-Grade Energy Sources in the System of Preparation of Biogas Plant Substrates," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 11(1), pages 1-17, January.
    3. Trond Thorgeir Harsem & Behrouz Nourozi & Amirmohammad Behzadi & Sasan Sadrizadeh, 2021. "Design and Parametric Investigation of an Efficient Heating System, an Effort to Obtain a Higher Seasonal Performance Factor," Energies, MDPI, vol. 14(24), pages 1-13, December.
    4. Mohammad Kanan & Muhammad Salman Habib & Tufail Habib & Sadaf Zahoor & Anas Gulzar & Hamid Raza & Zaher Abusaq, 2022. "A Flexible Robust Possibilistic Programming Approach for Sustainable Second-Generation Biogas Supply Chain Design under Multiple Uncertainties," Sustainability, MDPI, vol. 14(18), pages 1-32, September.
    5. Nie, Yazhou & Deng, Mengsi & Shan, Ming & Yang, Xudong, 2023. "Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications," Energy Policy, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    2. Henrik B. Møller & Peter Sørensen & Jørgen E. Olesen & Søren O. Petersen & Tavs Nyord & Sven G. Sommer, 2022. "Agricultural Biogas Production—Climate and Environmental Impacts," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    3. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    4. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    5. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    6. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    7. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    8. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    9. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    10. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    11. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    12. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    13. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    14. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    15. Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
    16. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    17. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    18. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    19. Christian Spreafico & Davide Russo, 2020. "Exploiting the Scientific Literature for Performing Life Cycle Assessment about Transportation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    20. Jacob Hale & Suzanna Long, 2020. "A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition," Energies, MDPI, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1682-1691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.