IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp1703-1714.html
   My bibliography  Save this article

Contribution of photovoltaic distributed generation to the transition towards an emission-free supply to university campus: technical, economic feasibility and carbon emission reduction at the Universidad Politécnica de Madrid

Author

Listed:
  • Olivieri, Lorenzo
  • Caamaño-Martín, Estefanía
  • Sassenou, Louise-Nour
  • Olivieri, Francesca

Abstract

Solar energy, as main energy supply that sustains life on Earth, is also an unavoidable component of the complex strategy in achieving a clean and fair energy transition and goals for sustainable development by 2030. The present work studies the potential of installing Photovoltaic Distributed Generation at Universidad Politécnica de Madrid – Ciudad Universitaria campus. To this end, the study focuses on the electricity generation, carbon reduction and economic feasibility of solar photovoltaic systems installation using and comparing two different approaches based on data input with different time resolution, simulation software and level of details. Results show that the optimal photovoltaic power that maximizes emissions savings also ensures the best economic return, and in addition coincides with the maximum solar potential of the Campus, which is about 3.3 MW. At campus level, approximately 77% of the photovoltaic electricity production would be consumed locally, which would suppose a coverage of about 40% of the total electricity consumption. Emissions savings could reach 30% and an in-depth economic analysis indicates that the project is highly profitable. These results and methodology could be used to assess the feasibility of photovoltaic systems at other universities and help entities study the solar potential of their buildings.

Suggested Citation

  • Olivieri, Lorenzo & Caamaño-Martín, Estefanía & Sassenou, Louise-Nour & Olivieri, Francesca, 2020. "Contribution of photovoltaic distributed generation to the transition towards an emission-free supply to university campus: technical, economic feasibility and carbon emission reduction at the Univers," Renewable Energy, Elsevier, vol. 162(C), pages 1703-1714.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1703-1714
    DOI: 10.1016/j.renene.2020.09.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suomalainen, Kiti & Wang, Vincent & Sharp, Basil, 2017. "Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level," Renewable Energy, Elsevier, vol. 111(C), pages 463-475.
    2. Brito, M.C. & Freitas, S. & Guimarães, S. & Catita, C. & Redweik, P., 2017. "The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data," Renewable Energy, Elsevier, vol. 111(C), pages 85-94.
    3. Karteris, Marinos & Theodoridou, Ifigeneia & Mallinis, Georgios & Papadopoulos, Agis M., 2014. "Façade photovoltaic systems on multifamily buildings: An urban scale evaluation analysis using geographical information systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 912-933.
    4. Philippe Menanteau & Dominique Finon & Marie-Laure Lamy, 2003. "Prices versus quantities :environmental policies for promoting the development of renewable energy," Post-Print halshs-00480457, HAL.
    5. Gu, Yifan & Wang, Hongtao & Xu, Jin & Wang, Ying & Wang, Xin & Robinson, Zoe P. & Li, Fengting & Wu, Jiang & Tan, Jianguo & Zhi, Xing, 2019. "Quantification of interlinked environmental footprints on a sustainable university campus: A nexus analysis perspective," Applied Energy, Elsevier, vol. 246(C), pages 65-76.
    6. Gomez-Exposito, Antonio & Arcos-Vargas, Angel & Gutierrez-Garcia, Francisco, 2020. "On the potential contribution of rooftop PV to a sustainable electricity mix: The case of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Martins, Florinda, 2017. "PV sector in the European Union countries – Clusters and efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 173-177.
    8. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    9. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    10. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    11. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    12. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2015. "Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage," Applied Energy, Elsevier, vol. 139(C), pages 245-259.
    13. Eskew, John & Ratledge, Meredith & Wallace, Michael & Gheewala, Shabbir H. & Rakkwamsuk, Pattana, 2018. "An environmental Life Cycle Assessment of rooftop solar in Bangkok, Thailand," Renewable Energy, Elsevier, vol. 123(C), pages 781-792.
    14. Gudmunds, D. & Nyholm, E. & Taljegard, M. & Odenberger, M., 2020. "Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle," Renewable Energy, Elsevier, vol. 148(C), pages 1200-1215.
    15. Zafrilla, Jorge-Enrique & Arce, Guadalupe & Cadarso, María-Ángeles & Córcoles, Carmen & Gómez, Nuria & López, Luis-Antonio & Monsalve, Fabio & Tobarra, María-Ángeles, 2019. "Triple bottom line analysis of the Spanish solar photovoltaic sector: A footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Mah, Daphne Ngar-yin & Wang, Guihua & Lo, Kevin & Leung, Michael K.H. & Hills, Peter & Lo, Alex Y., 2018. "Barriers and policy enablers for solar photovoltaics (PV) in cities: Perspectives of potential adopters in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 921-936.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ruishi & Zhao, Rongqin & Xie, Zhixiang & Xiao, Liangang & Chuai, Xiaowei & Feng, Mengyu & Zhang, Huifang & Luo, Huili, 2022. "Water–energy–carbon nexus at campus scale: Case of North China University of Water Resources and Electric Power," Energy Policy, Elsevier, vol. 166(C).
    2. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    3. Aldo Alvarez-Risco & Shyla Del-Aguila-Arcentales & Marc A. Rosen & Verónica García-Ibarra & Sandra Maycotte-Felkel & Gabriel Mauricio Martínez-Toro, 2021. "Expectations and Interests of University Students in COVID-19 Times about Sustainable Development Goals: Evidence from Colombia, Ecuador, Mexico, and Peru," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    4. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak & Łukasz Baran & Tomasz Barcz & Przemysław Kołaczyński & Wojciech Suchecki, 2023. "Investing in Distributed Generation Technologies at Polish University Campuses during the Energy Transition Era," Energies, MDPI, vol. 16(12), pages 1-24, June.
    5. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    6. Lingyu Wang & Xingyun Yan & Mingzhu Fang & Hua Song & Jie Hu, 2023. "A Systematic Design Framework for Zero Carbon Campuses: Investigating the Shanghai Jiao Tong University Fahua Campus Case," Sustainability, MDPI, vol. 15(10), pages 1-31, May.
    7. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margaux Escoffier & Emmanuel Hache & Valérie Mignon & Anthony Paris, 2019. "Determinants of investments in solar photovoltaic: Do oil prices really matter?," Working Papers hal-04141866, HAL.
    2. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    3. Fuster-Palop, Enrique & Prades-Gil, Carlos & Masip, X. & Viana-Fons, Joan D. & Payá, Jorge, 2021. "Innovative regression-based methodology to assess the techno-economic performance of photovoltaic installations in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Farah Roslan & Ștefan Cristian Gherghina & Jumadil Saputra & Mário Nuno Mata & Farah Diana Mohmad Zali & José Moleiro Martins, 2022. "A Panel Data Approach towards the Effectiveness of Energy Policies in Fostering the Implementation of Solar Photovoltaic Technology: Empirical Evidence for Asia-Pacific," Energies, MDPI, vol. 15(10), pages 1-22, May.
    5. Hepburn, Cameron & Mealy, Penny, 2017. "Transformational Change: Parallels for addressing climate and development goals," INET Oxford Working Papers 2019-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised May 2019.
    6. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    7. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    8. Bongsuk Sung & Myung-Bae Yeom & Hong-Gi Kim, 2017. "Eco-Efficiency of Government Policy and Exports in the Bioenergy Technology Market," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    9. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    10. Marcela Marçal Alves Pinto & João Luiz Kovaleski & Rui Tadashi Yoshino & Regina Negri Pagani, 2019. "Knowledge and Technology Transfer Influencing the Process of Innovation in Green Supply Chain Management: A Multicriteria Model Based on the DEMATEL Method," Sustainability, MDPI, vol. 11(12), pages 1-33, June.
    11. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    12. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
    13. Agnolucci, Paolo, 2008. "Factors influencing the likelihood of regulatory changes in renewable electricity policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 141-161, January.
    14. Youhyun Lee & Inseok Seo, 2019. "Sustainability of a Policy Instrument: Rethinking the Renewable Portfolio Standard in South Korea," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    15. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    16. Peter Grösche & Carsten Schröder, 2014. "On the redistributive effects of Germany’s feed-in tariff," Empirical Economics, Springer, vol. 46(4), pages 1339-1383, June.
    17. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    18. La Monaca, Sarah & Ryan, Lisa, 2017. "Solar PV where the sun doesn’t shine: Estimating the economic impacts of support schemes for residential PV with detailed net demand profiling," Energy Policy, Elsevier, vol. 108(C), pages 731-741.
    19. Darmani, Anna & Rickne, Annika & Hidalgo, Antonio & Arvidsson, Niklas, 2016. "When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 372-381.
    20. Malte Hübner & Christoph M. Schmidt & Benjamin Weigert, 2012. "Energiepolitik: Erfolgreiche Energiewende nur im europäischen Kontext," Perspektiven der Wirtschaftspolitik, Verein für Socialpolitik, vol. 13(4), pages 286-307, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1703-1714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.