IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v39y2014icp912-933.html
   My bibliography  Save this article

Façade photovoltaic systems on multifamily buildings: An urban scale evaluation analysis using geographical information systems

Author

Listed:
  • Karteris, Marinos
  • Theodoridou, Ifigeneia
  • Mallinis, Georgios
  • Papadopoulos, Agis M.

Abstract

In this paper is presented the application of a comprehensive methodology for the prediction of the photovoltaic (PV) potential in building façade surfaces and particularly with an application example for the Greek residential sector. The methodology is based on the determination of typical façade PV installations for Greek multifamily buildings considering architectural and technical aspects. The proposed solutions are then evaluated with dynamic energy simulation to determine the most efficient ones. The results produced in this way are used as baselines for a large scale analysis, which is implemented in the urban area of Greece׳s second largest city, Thessaloniki, by means of Geographical Information Systems. This led to the exploitable PV potential and the solar electricity production as well as the respective CO2 savings. One of the interesting findings is the discrepancy between the architectural availability and the overall solar suitability of façade surfaces. This discrepancy is based on the following main factors: firstly, the high density of the built environment consisting of street canyons with high Height-Width ratio, secondly the varying orientation of the buildings and, finally, the buildings׳ typology, with the complex geometry due to verandas, erkers and semi-enclosed spaces.

Suggested Citation

  • Karteris, Marinos & Theodoridou, Ifigeneia & Mallinis, Georgios & Papadopoulos, Agis M., 2014. "Façade photovoltaic systems on multifamily buildings: An urban scale evaluation analysis using geographical information systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 912-933.
  • Handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:912-933
    DOI: 10.1016/j.rser.2014.07.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114005152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Strazzera, Elisabetta & Statzu, Vania, 2017. "Fostering photovoltaic technologies in Mediterranean cities: Consumers’ demand and social acceptance," Renewable Energy, Elsevier, vol. 102(PB), pages 361-371.
    2. Olivieri, Lorenzo & Caamaño-Martín, Estefanía & Sassenou, Louise-Nour & Olivieri, Francesca, 2020. "Contribution of photovoltaic distributed generation to the transition towards an emission-free supply to university campus: technical, economic feasibility and carbon emission reduction at the Univers," Renewable Energy, Elsevier, vol. 162(C), pages 1703-1714.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    2. Edgar Lorenzo-Sáez & José-Vicente Oliver-Villanueva & Eloina Coll-Aliaga & Lenin-Guillermo Lemus-Zúñiga & Victoria Lerma-Arce & Antonio Reig-Fabado, 2020. "Energy Efficiency and GHG Emissions Mapping of Buildings for Decision-Making Processes against Climate Change at the Local Level," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    3. Karteris, Marinos & Theodoridou, Ifigeneia & Mallinis, Giorgos & Tsiros, Emmanouel & Karteris, Apostolos, 2016. "Towards a green sustainable strategy for Mediterranean cities: Assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 510-525.
    4. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    5. Aggelos Tsaligopoulos & Stella Sofia Kyvelou & Michalis Chiotinis & Aimilia Karapostoli & Eleftheria E. Klontza & Demetris F. Lekkas & Yiannis G. Matsinos, 2022. "The Sound of a Circular City: Towards a Circularity-Driven Quietness," IJERPH, MDPI, vol. 19(19), pages 1-22, September.
    6. Byrne, John & Taminiau, Job & Kurdgelashvili, Lado & Kim, Kyung Nam, 2015. "A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 830-844.
    7. Artur Wyrwa & Yi-kuang Chen, 2017. "Mapping Urban Heat Demand with the Use of GIS-Based Tools," Energies, MDPI, vol. 10(5), pages 1-15, May.
    8. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    9. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    10. Jacopo Gaspari & Michaela De Giglio & Ernesto Antonini & Vincenzo Vodola, 2020. "A GIS-Based Methodology for Speedy Energy Efficiency Mapping: A Case Study in Bologna," Energies, MDPI, vol. 13(9), pages 1-19, May.
    11. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    12. Miguel Amado & Francesca Poggi & António Ribeiro Amado & Sílvia Breu, 2017. "A Cellular Approach to Net-Zero Energy Cities," Energies, MDPI, vol. 10(11), pages 1-17, November.
    13. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Yue Wu, 2017. "Assessment of Large Scale Photovoltaic Power Generation from Carport Canopies," Energies, MDPI, vol. 10(5), pages 1-22, May.
    14. Meskiana Boulahia & Kahina Amal Djiar & Miguel Amado, 2021. "Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria," Energies, MDPI, vol. 14(6), pages 1-16, March.
    15. Martín-Chivelet, Nuria, 2016. "Photovoltaic potential and land-use estimation methodology," Energy, Elsevier, vol. 94(C), pages 233-242.
    16. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    17. Azizkhani, Mostafa & Vakili, Abdullah & Noorollahi, Younes & Naseri, Farzin, 2017. "Potential survey of photovoltaic power plants using Analytical Hierarchy Process (AHP) method in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1198-1206.
    18. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    19. Puyi Wang & Yew Hoong Wong & Chou Yong Tan & Sheng Li & Wen Tong Chong, 2022. "Vertical Greening Systems: Technological Benefits, Progresses and Prospects," Sustainability, MDPI, vol. 14(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:912-933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.