IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp963-971.html
   My bibliography  Save this article

Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation

Author

Listed:
  • Yang, Jinhang
  • Wang, Xin
  • Shen, Boxiong
  • Hu, Zhenzhong
  • Xu, Lianfei
  • Yang, Shuo

Abstract

Pyrolysis of lignin was conducted and main decomposition temperature range was 250–500 °C and the maximum mass loss of lignin occurred at 300–350 °C (10–20 °C/min). Activation energy was ranged from 166 to 182 kJ/mol and lnA was ranged from 35 to 40. All fitting peaks described by mechanism function of random nucleation followed by growth. There was apparent infrared spectroscopy absorbance at 3565, 2950, 2367, 2182, 1775, and 1103 cm−1 because of vibrations of functional group in H2O, CH4, CO2, CO, CO and O-containing compounds. Main composition of bio-oil was phenols and main carbon distribution was ranged from C5 to C8. Ratio of p-hydroxyphenyl, guaiacyl and syringyl structures in bio-oil varied with pyrolysis temperature. Main pyrolysis mechanism of lignin was cracking of typical structure into phenols, cracking of carboxyl groups in side chains to form CO2 and carbonization of aromatic structure to biochar. Lignin showed higher biochar yield (up to 47.46%) and biochar from lignin pyrolysis have high carbon and low ash content. Comparing with direct pyrolysis, fermentation-pyrolysis pathway produced extra high-value products of ethanol (16.70%) and CO2 (8.5%). It indicated a potential and high-value pathway of lignin produced in cellulosic ethanol plants.

Suggested Citation

  • Yang, Jinhang & Wang, Xin & Shen, Boxiong & Hu, Zhenzhong & Xu, Lianfei & Yang, Shuo, 2020. "Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation," Renewable Energy, Elsevier, vol. 161(C), pages 963-971.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:963-971
    DOI: 10.1016/j.renene.2020.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    2. Ge, Xumeng & Xu, Fuqing & Vasco-Correa, Juliana & Li, Yebo, 2016. "Giant reed: A competitive energy crop in comparison with miscanthus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 350-362.
    3. Stephen, James D. & Mabee, Warren E. & Saddler, Jack N., 2013. "Lignocellulosic ethanol production from woody biomass: The impact of facility siting on competitiveness," Energy Policy, Elsevier, vol. 59(C), pages 329-340.
    4. Ding, Yanming & Zhang, Wenlong & Yu, Lei & Lu, Kaihua, 2019. "The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis," Energy, Elsevier, vol. 176(C), pages 582-588.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ansari, Khursheed B. & Kamal, Bushra & Beg, Sidra & Wakeel Khan, Md. Aquib & Khan, Mohd Shariq & Al Mesfer, Mohammed K. & Danish, Mohd., 2021. "Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Leandro Gomes & Jorge Costa & Joana Moreira & Berta Cumbane & Marcelo Abias & Fernando Santos & Federica Zanetti & Andrea Monti & Ana Luisa Fernando, 2022. "Switchgrass and Giant Reed Energy Potential when Cultivated in Heavy Metals Contaminated Soils," Energies, MDPI, vol. 15(15), pages 1-28, July.
    3. Chen, Xinyang & Cai, Di & Yang, Yumiao & Sun, Yuhang & Wang, Binhui & Yao, Zhitong & Jin, Meiqing & Liu, Jie & Reinmöller, Markus & Badshah, Syed Lal & Magdziarz, Aneta, 2023. "Pyrolysis kinetics of bio-based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC-MS," Renewable Energy, Elsevier, vol. 205(C), pages 490-498.
    4. Sun, Ce & Li, Wenlong & Chen, Xiaojian & Li, Changxin & Tan, Haiyan & Zhang, Yanhua, 2021. "Synergistic interactions for saving energy and promoting the co-pyrolysis of polylactic acid and wood flour," Renewable Energy, Elsevier, vol. 171(C), pages 254-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    2. Vaillancourt, Kathleen & Bahn, Olivier & Levasseur, Annie, 2019. "The role of bioenergy in low-carbon energy transition scenarios: A case study for Quebec (Canada)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 24-34.
    3. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    4. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    5. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    6. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
    7. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    8. Xianhui Mao & Ankui Hu & Rui Zhao & Fei Wang & Mengkun Wu, 2023. "Evaluation and Application of Surrounding Rock Stability Based on an Improved Fuzzy Comprehensive Evaluation Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    9. Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.
    10. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    11. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Ding, Yanming & Chen, Wenlu & Zhang, Wenlong & Zhang, Xueting & Li, Changhai & Zhou, Ru & Miao, Fasheng, 2022. "Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales," Energy, Elsevier, vol. 258(C).
    13. Sameer Neve & Dibyendu Sarkar & Zhiming Zhang & Rupali Datta, 2022. "Optimized Production of Second-Generation Bioethanol from a Spent C4 Grass: Vetiver ( Chrysopogon zizanioides )," Energies, MDPI, vol. 15(24), pages 1-12, December.
    14. Zou, Songchun & Zhao, Wanzhong, 2020. "Energy optimization strategy of vehicle DCS system based on APSO algorithm," Energy, Elsevier, vol. 208(C).
    15. Zhao, Yan & Damgaard, Anders & Xu, Yingjie & Liu, Shan & Christensen, Thomas H., 2019. "Bioethanol from corn stover – Global warming footprint of alternative biotechnologies," Applied Energy, Elsevier, vol. 247(C), pages 237-253.
    16. Carlos Alberto Torres Cantero & Guadalupe Lopez Lopez & Victor M. Alvarado & Ricardo F. Escobar Jimenez & Jesse Y. Rumbo Morales & Eduardo M. Sanchez Coronado, 2017. "Control Structures Evaluation for a Salt Extractive Distillation Pilot Plant: Application to Bio-Ethanol Dehydration," Energies, MDPI, vol. 10(9), pages 1-29, August.
    17. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    18. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    19. Cardona, Eliana & Llano, Biviana & Peñuela, Mariana & Peña, Juan & Rios, Luis Alberto, 2018. "Liquid-hot-water pretreatment of palm-oil residues for ethanol production: An economic approach to the selection of the processing conditions," Energy, Elsevier, vol. 160(C), pages 441-451.
    20. Patricia Portero-Barahona & Enrique Javier Carvajal-Barriga & Jesús Martín-Gil & Pablo Martín-Ramos, 2019. "Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment," Energies, MDPI, vol. 12(9), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:963-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.