IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp149-161.html
   My bibliography  Save this article

Wind energy conversion systems analysis of PMSG on offshore wind turbine using improved SMC and Extended State Observer

Author

Listed:
  • Pan, Lin
  • Shao, Chengpeng

Abstract

In this paper, an improved Sliding Mode Control(SMC) is proposed based on the Wind Energy Conversion System(WECS), which is with offshore wind turbine Permanent Magnet Synchronous Generator(PMSG) connected to the grid. Moreover, an aerodynamic torque observer is presented to improve the performance of Maximum Power Point Tracking(MPPT). Since the wind energy conversion system is a complicated nonlinear system, an enhanced reach law of sliding mode controller is designed to reduce the chattering issue. Compared to traditional control methods, the simulation results show that the control method proposed in this paper significantly improves the stability and robustness of PMSG-Based WECS in the area of MPPT.

Suggested Citation

  • Pan, Lin & Shao, Chengpeng, 2020. "Wind energy conversion systems analysis of PMSG on offshore wind turbine using improved SMC and Extended State Observer," Renewable Energy, Elsevier, vol. 161(C), pages 149-161.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:149-161
    DOI: 10.1016/j.renene.2020.06.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120309678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingcan Li & Hanbin Xiao & Lin Pan & Chengjun Xu, 2019. "Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms," Energies, MDPI, vol. 12(5), pages 1-32, March.
    2. Chen, Min-Rong & Zeng, Guo-Qiang & Lu, Kang-Di, 2019. "Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources," Renewable Energy, Elsevier, vol. 143(C), pages 277-294.
    3. Chen, Jian & Yao, Wei & Zhang, Chuan-Ke & Ren, Yaxing & Jiang, Lin, 2019. "Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control," Renewable Energy, Elsevier, vol. 134(C), pages 478-495.
    4. Zhang, Mingming & Yang, Honglei & Xu, Jianzhong, 2017. "Numerical investigation of azimuth dependent smart rotor control on a large-scale offshore wind turbine," Renewable Energy, Elsevier, vol. 105(C), pages 248-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riyadh Rouabhi & Abdelghafour Herizi & Ali Djerioui, 2024. "Performance of Robust Type-2 Fuzzy Sliding Mode Control Compared to Various Conventional Controls of Doubly-Fed Induction Generator for Wind Power Conversion Systems," Energies, MDPI, vol. 17(15), pages 1-25, July.
    2. Btissam Majout & Badre Bossoufi & Manale Bouderbala & Mehedi Masud & Jehad F. Al-Amri & Mohammed Taoussi & Mohammed El Mahfoud & Saad Motahhir & Mohammed Karim, 2022. "Improvement of PMSG-Based Wind Energy Conversion System Using Developed Sliding Mode Control," Energies, MDPI, vol. 15(5), pages 1-17, February.
    3. Zouheyr, Dekali & Lotfi, Baghli & Abdelmadjid, Boumediene, 2021. "Improved hardware implementation of a TSR based MPPT algorithm for a low cost connected wind turbine emulator under unbalanced wind speeds," Energy, Elsevier, vol. 232(C).
    4. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Pan, Lin & Xiong, Yong & Zhu, Ze & Wang, Leichong, 2022. "Research on variable pitch control strategy of direct-driven offshore wind turbine using KELM wind speed soft sensor," Renewable Energy, Elsevier, vol. 184(C), pages 1002-1017.
    6. González-Hernández, José Genaro & Salas-Cabrera, Rubén & Vázquez-Bautista, Roberto & Ong-de-la-Cruz, Luis Manuel & Rodríguez-Guillén, Joel, 2021. "A novel MPPT PI discrete reverse-acting controller for a wind energy conversion system," Renewable Energy, Elsevier, vol. 178(C), pages 904-915.
    7. Youssef Errami & Abdellatif Obbadi & Smail Sahnoun & Mohssin Aoutoul, 2024. "Nonlinear Enhanced Control for Wind Energy Generation System-Based Permanent Magnet Synchronous Generator," Sustainability, MDPI, vol. 16(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Lin & Wang, Xudong, 2020. "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control," Renewable Energy, Elsevier, vol. 159(C), pages 221-237.
    2. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    3. Mojtaba Nasiri & Saleh Mobayen & Quan Min Zhu, 2019. "Super-Twisting Sliding Mode Control for Gearless PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    4. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    5. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    6. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    7. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Anto Anbarasu Yesudhas & Young Hoon Joo & Seong Ryong Lee, 2022. "Reference Model Adaptive Control Scheme on PMVG-Based WECS for MPPT under a Real Wind Speed," Energies, MDPI, vol. 15(9), pages 1-17, April.
    9. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    10. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    11. Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar & Bahaa Saad Mahmoud, 2022. "Economical-Environmental-Technical Operation of Power Networks with High Penetration of Renewable Energy Systems Using Multi-Objective Coronavirus Herd Immunity Algorithm," Mathematics, MDPI, vol. 10(7), pages 1-43, April.
    12. Yang, Bo & Wu, Shaocong & Li, Qiang & Yan, Yingjie & Li, Danyang & Luo, Enbo & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Shu, Hongchun & Li, Zilin & Wang, Jingbo, 2023. "Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition," Renewable Energy, Elsevier, vol. 204(C), pages 197-217.
    13. Huazhen Cao & Chong Gao & Xuan He & Yang Li & Tao Yu, 2020. "Multi-Agent Cooperation Based Reduced-Dimension Q(λ) Learning for Optimal Carbon-Energy Combined-Flow," Energies, MDPI, vol. 13(18), pages 1-22, September.
    14. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    15. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    16. Zhang, Xinshuo & Huang, Weibin & Chen, Shijun & Xie, Diya & Liu, Dexu & Ma, Guangwen, 2020. "Grid–source coordinated dispatching based on heterogeneous energy hybrid power generation," Energy, Elsevier, vol. 205(C).
    17. Xuesong Zhou & Yongliang Zhou & Youjie Ma & Luyong Yang & Xia Yang & Bo Zhang, 2020. "DC Bus Voltage Control of Grid-Side Converter in Permanent Magnet Synchronous Generator Based on Improved Second-Order Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 13(18), pages 1-19, September.
    18. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    19. Lin Wang & Anke Xue, 2021. "Equivalent Modeling of Microgrids Based on Optimized Broad Learning System," Energies, MDPI, vol. 14(23), pages 1-11, November.
    20. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:149-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.