IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp513-525.html
   My bibliography  Save this article

Performance of wedge-shaped luminescent solar concentrators employing phosphor films and annual energy estimation case studies

Author

Listed:
  • Hughes, Michael D.
  • Smith, Duncan E.
  • Borca-Tasciuc, Diana-Andra

Abstract

Luminescent solar concentrators (LSCs) are solar devices that focus sunlight through red-shifted internal reflection and have been proposed as a potential alternative to traditional photovoltaic (PV) panels. Such systems also have potential applications as multi-functional building envelope materials. This paper investigates the performance of wedge-shaped LSCs employing inorganic luminescent phosphors that demonstrate enhanced performance at incidence angles that conventional solar panels do not use effectively. This behavior is investigated experimentally through the current-voltage (I–V) characteristics of solar cells attached to wedge-shaped LSCs illuminated at angles covering the entire range of possible insolation conditions. Similar experiments were also performed on solar cells to determine the power ratio, or the power produced by solar cells within an LSC normalized to the power produced by bare solar cells exposed to identical insolation conditions. Using laboratory measured power ratio and recorded direct normal irradiance data for two case studies in Phoenix AZ and Albany NY, the annual energy production for wedge-shaped LSCs mounted on vertical walls due to direct-beam irradiance was determined. The energy produced by solar cells within vertically installed LSCs is between 20 and 40% above annual energy produced by vertically installed solar panels, depending on location and orientation (facing east or south). Moreover, depending on orientation, wedge-LSC power production peaks at traditionally suboptimal times for a solar panel. In all, these results demonstrate the potential for wedge-shaped LSCs as a power harvesting building envelope, an architectural solution emerging in response to net-zero energy building legislation.

Suggested Citation

  • Hughes, Michael D. & Smith, Duncan E. & Borca-Tasciuc, Diana-Andra, 2020. "Performance of wedge-shaped luminescent solar concentrators employing phosphor films and annual energy estimation case studies," Renewable Energy, Elsevier, vol. 160(C), pages 513-525.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:513-525
    DOI: 10.1016/j.renene.2020.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120310818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    2. Hughes, Michael D. & Maher, Christopher & Borca-Tasciuc, Diana-Andra & Polanco, David & Kaminski, Deborah, 2013. "Performance comparison of wedge-shaped and planar luminescent solar concentrators," Renewable Energy, Elsevier, vol. 52(C), pages 266-272.
    3. Kumar Sahu, Bikash, 2015. "A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 621-634.
    4. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    5. Bognár, Ádám & Kusnadi, Suryadi & Slooff, Lenneke H. & Tzikas, Chris & Loonen, Roel C.G.M. & de Jong, Minne M. & Hensen, Jan L.M. & Debije, Michael G., 2020. "The solar noise barrier project 4: Modeling of full-scale luminescent solar concentrator noise barrier panels," Renewable Energy, Elsevier, vol. 151(C), pages 1141-1149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincent Oliveto & Michael Hughes & Duncan E. Smith & Diana-Andra Borca-Tasciuc, 2022. "Numerical and Experimental Investigation of Nanostructure-Based Asymmetric Light Transmission Interfaces for Solar Concentrator Applications," Energies, MDPI, vol. 15(21), pages 1-11, November.
    2. Duncan E. Smith & Michael D. Hughes & Bhakti Patel & Diana-Andra Borca-Tasciuc, 2021. "An Open-Source Monte Carlo Ray-Tracing Simulation Tool for Luminescent Solar Concentrators with Validation Studies Employing Scattering Phosphor Films," Energies, MDPI, vol. 14(2), pages 1-28, January.
    3. Smith, Duncan E. & Hughes, Michael D. & Borca-Tasciuc, Diana-Andra, 2022. "Towards a standard approach for annual energy production of concentrator-based building-integrated photovoltaics," Renewable Energy, Elsevier, vol. 186(C), pages 469-485.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Jian & Zhou, Yuqi & Wang, Yuan & Miao, Zhuang & Guo, Yupeng & Zhang, Hao & Li, Xueting & Wang, Zhipeng & Shi, Zongmo, 2023. "A large-sized thermoelectric module composed of cement-based composite blocks for pavement energy harvesting and surface temperature reducing," Energy, Elsevier, vol. 265(C).
    2. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    3. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    4. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    5. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    6. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    8. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    9. Craig, Michael & Guerra, Omar J. & Brancucci, Carlo & Pambour, Kwabena Addo & Hodge, Bri-Mathias, 2020. "Valuing intra-day coordination of electric power and natural gas system operations," Energy Policy, Elsevier, vol. 141(C).
    10. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    11. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    12. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    13. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    14. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    15. Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    16. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    17. Amadeh, Ali & Lee, Zachary E. & Zhang, K. Max, 2022. "Quantifying demand flexibility of building energy systems under uncertainty," Energy, Elsevier, vol. 246(C).
    18. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    19. Masamitsu Kurata & Noriatsu Matsui & Yukio Ikemoto & Hiromi Tsuboi, 2018. "In recent years, the Sustainable Development Goals has managed to shepherd the reduction of energy poverty and extension of sustainable energy, making both international objectives. Using two-period d," Economics Bulletin, AccessEcon, vol. 38(2), pages 995-1013.
    20. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:513-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.