IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8175-d960827.html
   My bibliography  Save this article

Numerical and Experimental Investigation of Nanostructure-Based Asymmetric Light Transmission Interfaces for Solar Concentrator Applications

Author

Listed:
  • Vincent Oliveto

    (Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA)

  • Michael Hughes

    (Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA)

  • Duncan E. Smith

    (Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA)

  • Diana-Andra Borca-Tasciuc

    (Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA)

Abstract

Research in asymmetric light transmission interfaces has been recently gaining traction. While traditionally considered for optical circuitry applications, there is a new interest to use these interfaces in luminescent solar concentrators. Previous studies have shown that applying them to the top surface of a concentrator could mitigate surface losses. This paper presents experimental results for proof-of-concept asymmetric light transmission interfaces that may have potential applications in luminescent solar concentrators. The interfaces and the underneath substrate were created in a single step from polydimethylsiloxane using silicon molds fabricated on <100> wafers via anisotropic wet etching. The resulting structures were pyramidal in shape. Large surface areas of nanostructures repeating at 800 nm, 900 nm, and 1000 nm were tested for backward and forward transmission using a spectrometer. Results showed a 21%, 10%, and 0% average transmissivity difference between the forward and backward directions for each periodicity, respectively. The trends seen experimentally were confirmed numerically via COMSOL simulations.

Suggested Citation

  • Vincent Oliveto & Michael Hughes & Duncan E. Smith & Diana-Andra Borca-Tasciuc, 2022. "Numerical and Experimental Investigation of Nanostructure-Based Asymmetric Light Transmission Interfaces for Solar Concentrator Applications," Energies, MDPI, vol. 15(21), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8175-:d:960827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hughes, Michael D. & Smith, Duncan E. & Borca-Tasciuc, Diana-Andra, 2020. "Performance of wedge-shaped luminescent solar concentrators employing phosphor films and annual energy estimation case studies," Renewable Energy, Elsevier, vol. 160(C), pages 513-525.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Duncan E. & Hughes, Michael D. & Borca-Tasciuc, Diana-Andra, 2022. "Towards a standard approach for annual energy production of concentrator-based building-integrated photovoltaics," Renewable Energy, Elsevier, vol. 186(C), pages 469-485.
    2. Duncan E. Smith & Michael D. Hughes & Bhakti Patel & Diana-Andra Borca-Tasciuc, 2021. "An Open-Source Monte Carlo Ray-Tracing Simulation Tool for Luminescent Solar Concentrators with Validation Studies Employing Scattering Phosphor Films," Energies, MDPI, vol. 14(2), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8175-:d:960827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.