IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipap108-119.html
   My bibliography  Save this article

Assessment, sources and predictability of the swell wave power arriving to Chile

Author

Listed:
  • Mediavilla, D.G.
  • Figueroa, D.

Abstract

Located at the western border of South America, Chile lacks appreciable reservoirs of fossil fuels, and has begun an effort for developing renewable energies. As the wave power increases to the south, and the southern border of the Chilean Interconnected electrical network lies by 40°S, the zone around Chiloé Island represents a unique opportunity for harvesting wave energy. Using results from a 20-year global numerical wave model we assessed the wave power and its variability for the Chilean coast, and we determined the sources of the swell arriving to the coast. Wave power and wave arriving direction increased rather steadily from 25 kW/m and SW at the northern Chile (∼18°S) to 100 kW/m and W near the south (∼54°S). A validated high resolution wave model was developed for the ocean around Chiloé Island. Determination of wave generation zones allows foreseeing a potentially accurate forecast of wave energy for this area. Total wave power along 10% of the coastline of Chiloé Island is of around 1800 MW–720 MW during the year. We postulate that wave energy harvesting could fulfill the electricity needs at the remote regions of Southern Chile.

Suggested Citation

  • Mediavilla, D.G. & Figueroa, D., 2017. "Assessment, sources and predictability of the swell wave power arriving to Chile," Renewable Energy, Elsevier, vol. 114(PA), pages 108-119.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pa:p:108-119
    DOI: 10.1016/j.renene.2017.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117301957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    2. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eelsalu, Maris & Montoya, Rubén D. & Aramburo, Darwin & Osorio, Andrés F. & Soomere, Tarmo, 2024. "Spatial and temporal variability of wave energy resource in the eastern Pacific from Panama to the Drake passage," Renewable Energy, Elsevier, vol. 224(C).
    2. Mazzaretto, Ottavio Mattia & Lucero, Felipe & Besio, Giovanni & Cienfuegos, Rodrigo, 2020. "Perspectives for harnessing the energetic persistent high swells reaching the coast of Chile," Renewable Energy, Elsevier, vol. 159(C), pages 494-505.
    3. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2019. "Wave energy resource classification system for US coastal waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 54-68.
    3. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    4. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    5. García-Medina, Gabriel & Özkan-Haller, H. Tuba & Ruggiero, Peter, 2014. "Wave resource assessment in Oregon and southwest Washington, USA," Renewable Energy, Elsevier, vol. 64(C), pages 203-214.
    6. Su, Wen-Ray & Chen, Hongey & Chen, Wei-Bo & Chang, Chih-Hsin & Lin, Lee-Yaw & Jang, Jiun-Huei & Yu, Yi-Chiang, 2018. "Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan," Renewable Energy, Elsevier, vol. 118(C), pages 814-824.
    7. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.
    8. Aboobacker, V.M., 2017. "Wave energy resource assessment for eastern Bay of Bengal and Malacca Strait," Renewable Energy, Elsevier, vol. 114(PA), pages 72-84.
    9. Coe, Ryan G. & Bacelli, Giorgio & Forbush, Dominic, 2021. "A practical approach to wave energy modeling and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    10. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    11. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    12. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    13. Zheng, Chong-wei, 2021. "Global oceanic wave energy resource dataset—with the Maritime Silk Road as a case study," Renewable Energy, Elsevier, vol. 169(C), pages 843-854.
    14. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    15. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    16. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    17. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    18. Beya, Ignacio & Buckham, Bradley & Robertson, Bryson, 2021. "Impact of tidal currents and model fidelity on wave energy resource assessments," Renewable Energy, Elsevier, vol. 176(C), pages 50-66.
    19. Shih-Chun Hsiao & Chao-Tzuen Cheng & Tzu-Yin Chang & Wei-Bo Chen & Han-Lun Wu & Jiun-Huei Jang & Lee-Yaw Lin, 2021. "Assessment of Offshore Wave Energy Resources in Taiwan Using Long-Term Dynamically Downscaled Winds from a Third-Generation Reanalysis Product," Energies, MDPI, vol. 14(3), pages 1-25, January.
    20. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pa:p:108-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.