IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp1000-1014.html
   My bibliography  Save this article

Energy & economic assessment of façade-integrated solar thermal systems combined with ultra-low temperature district-heating

Author

Listed:
  • Lumbreras, Mikel
  • Garay, Roberto

Abstract

This paper conducts an energy and economic assessment of District Heating (DH) integrated Solar Thermal (ST) systems. An implementation with building-integrated ST collectors coupled to a Low Temperature District Heating (LTDH) system is studied, with special focus on unglazed collectors. ST heat is exploited in the building through direct use, while excess heat is delivered to the network. A novel control strategy for heat flows in the system is proposed.

Suggested Citation

  • Lumbreras, Mikel & Garay, Roberto, 2020. "Energy & economic assessment of façade-integrated solar thermal systems combined with ultra-low temperature district-heating," Renewable Energy, Elsevier, vol. 159(C), pages 1000-1014.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:1000-1014
    DOI: 10.1016/j.renene.2020.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120309137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    2. Fang, Hao & Xia, Jianjun & Zhu, Kan & Su, Yingbo & Jiang, Yi, 2013. "Industrial waste heat utilization for low temperature district heating," Energy Policy, Elsevier, vol. 62(C), pages 236-246.
    3. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    4. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    5. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    6. Soloha, Raimonda & Pakere, Ieva & Blumberga, Dagnija, 2017. "Solar energy use in district heating systems. A case study in Latvia," Energy, Elsevier, vol. 137(C), pages 586-594.
    7. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
    2. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    3. Kılkış, Şiir, 2024. "Urban emissions and land use efficiency scenarios for avoiding increments of global warming," Energy, Elsevier, vol. 307(C).
    4. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    5. Ireneusz Miciuła & Henryk Wojtaszek & Bogdan Włodarczyk & Marek Szturo & Miłosz Gac & Jerzy Będźmirowski & Katarzyna Kazojć & Judyta Kabus, 2021. "The Current Picture of the Transition to a Green Economy in the EU—Trends in Climate and Energy Policy versus State Security," Energies, MDPI, vol. 14(23), pages 1-25, December.
    6. Ireneusz Miciuła & Henryk Wojtaszek & Marek Bazan & Tomasz Janiczek & Bogdan Włodarczyk & Judyta Kabus & Radomir Kana, 2020. "Management of the Energy Mix and Emissivity of Individual Economies in the European Union as a Challenge of the Modern World Climate," Energies, MDPI, vol. 13(19), pages 1-24, October.
    7. Quirosa, Gonzalo & Torres, Miguel & Becerra, José A. & Jiménez-Espadafor, Francisco J. & Chacartegui, Ricardo, 2023. "Energy analysis of an ultra-low temperature district heating and cooling system with coaxial borehole heat exchangers," Energy, Elsevier, vol. 278(PA).
    8. Moldovan, Macedon & Rusea, Ioana & Visa, Ion, 2021. "Optimising the thickness of the water layer in a triangle solar thermal collector," Renewable Energy, Elsevier, vol. 173(C), pages 381-388.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    3. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    4. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Pakere, Ieva & Blumberga, Dagnija, 2020. "Solar power or solar heat: What will upraise the efficiency of district heating? Multi-criteria analyses approach," Energy, Elsevier, vol. 198(C).
    6. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    7. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    8. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    9. Verschelde, Tars & D'haeseleer, William, 2021. "Methodology for a global sensitivity analysis with machine learning on an energy system planning model in the context of thermal networks," Energy, Elsevier, vol. 232(C).
    10. Erica Corradi & Mosè Rossi & Alice Mugnini & Anam Nadeem & Gabriele Comodi & Alessia Arteconi & Danilo Salvi, 2021. "Energy, Environmental, and Economic Analyses of a District Heating (DH) Network from Both Thermal Plant and End-Users’ Prospective: An Italian Case Study," Energies, MDPI, vol. 14(22), pages 1-25, November.
    11. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    12. Kristina Lygnerud & Sarka Langer, 2022. "Urban Sustainability: Recovering and Utilizing Urban Excess Heat," Energies, MDPI, vol. 15(24), pages 1-11, December.
    13. Søren Djørup & Karl Sperling & Steffen Nielsen & Poul Alborg Østergaard & Jakob Zinck Thellufsen & Peter Sorknæs & Henrik Lund & David Drysdale, 2020. "District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change," Energies, MDPI, vol. 13(5), pages 1-15, March.
    14. Kipping, A. & Trømborg, E., 2015. "Hourly electricity consumption in Norwegian households – Assessing the impacts of different heating systems," Energy, Elsevier, vol. 93(P1), pages 655-671.
    15. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    16. Menapace, Andrea & Thellufsen, Jakob Zinck & Pernigotto, Giovanni & Roberti, Francesca & Gasparella, Andrea & Righetti, Maurizio & Baratieri, Marco & Lund, Henrik, 2020. "The design of 100 % renewable smart urb an energy systems: The case of Bozen-Bolzano," Energy, Elsevier, vol. 207(C).
    17. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    18. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
    19. Chambers, Jonathan & Zuberi, S. & Jibran, M. & Narula, Kapil & Patel, Martin K., 2020. "Spatiotemporal analysis of industrial excess heat supply for district heat networks in Switzerland," Energy, Elsevier, vol. 192(C).
    20. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:1000-1014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.