IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp173-181.html
   My bibliography  Save this article

Utilization of spectral mismatch correction factor for estimation of precise outdoor performance under different average photon energies

Author

Listed:
  • Tsuji, Masaki
  • Chantana, Jakapan
  • Nakayama, Koichi
  • Kawano, Yu
  • Hishikawa, Yoshihiro
  • Minemoto, Takashi

Abstract

Outdoor performance of test photovoltaic (PV) modules, especially short circuit current (ISC), is corrected to standard test conditions (STC) utilizing sc-Si PV module as PV module irradiance sensor (PVMS). In this contribution, average photon energy (APE) can be used as an index of solar spectral irradiance. The CdTe PV module was used as a test PV module since its spectrum response is significantly different from that of the PVMS to investigate an effect of spectral mismatch. The median of the error between ISC corrected to STC (ISC-correction) of CdTe PV module using PVMS and its ISC under STC is the highest at 2.64% under APE from 1.75 to 2.15 eV because of the spectral mismatch between PVMS and test PV module. On the other hand, the median of the error is obviously reduced to 0.89%, when ISC-correction was estimated using PVMS and spectral mismatch correction factor under APE from 1.75 to 2.15 eV. The lowest median of 0.54% for the error is furthermore realized under APE in a range of 1.83–1.95 eV, where spectral irradiance mostly indexed by the APE range from 1.83 to 1.95 eV (83% of all spectral irradiance) is frequently occurred at the outdoor installation site.

Suggested Citation

  • Tsuji, Masaki & Chantana, Jakapan & Nakayama, Koichi & Kawano, Yu & Hishikawa, Yoshihiro & Minemoto, Takashi, 2020. "Utilization of spectral mismatch correction factor for estimation of precise outdoor performance under different average photon energies," Renewable Energy, Elsevier, vol. 157(C), pages 173-181.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:173-181
    DOI: 10.1016/j.renene.2020.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phinikarides, Alexander & Kindyni, Nitsa & Makrides, George & Georghiou, George E., 2014. "Review of photovoltaic degradation rate methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 143-152.
    2. Chantana, Jakapan & Mano, Hiroyuki & Horio, Yuhei & Hishikawa, Yoshihiro & Minemoto, Takashi, 2017. "Spectral mismatch correction factor indicated by average photon energy for precise outdoor performance measurements of different-type photovoltaic modules," Renewable Energy, Elsevier, vol. 114(PB), pages 567-573.
    3. Chantana, Jakapan & Ueno, Seiya & Ota, Yasuyuki & Nishioka, Kensuke & Minemoto, Takashi, 2015. "Uniqueness verification of direct solar spectral index for estimating outdoor performance of concentrator photovoltaic systems," Renewable Energy, Elsevier, vol. 75(C), pages 762-766.
    4. Imai, Yurie & Chantana, Jakapan & Kawano, Yu & Hishikawa, Yoshihiro & Minemoto, Takashi, 2019. "Description of performance degradation of photovoltaic modules using spectral mismatch correction factor under different irradiance levels," Renewable Energy, Elsevier, vol. 141(C), pages 444-450.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daxini, Rajiv & Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2022. "Direct spectral distribution characterisation using the Average Photon Energy for improved photovoltaic performance modelling," Renewable Energy, Elsevier, vol. 201(P1), pages 1176-1188.
    2. Wang, Shuhao & Peng, Jinqing & Wang, Meng & Xue, Peng & Luo, Yimo & Ma, Tao & Zhao, Yifan, 2023. "Evaluation of the energy conversion performance of different photovoltaic materials with measured solar spectral irradiance," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imai, Yurie & Chantana, Jakapan & Kawano, Yu & Hishikawa, Yoshihiro & Minemoto, Takashi, 2019. "Description of performance degradation of photovoltaic modules using spectral mismatch correction factor under different irradiance levels," Renewable Energy, Elsevier, vol. 141(C), pages 444-450.
    2. Nakayama, Koichi & Tsuji, Masaki & Chantana, Jakapan & Kawano, Yu & Nishimura, Takahito & Hishikawa, Yoshihiro & Minemoto, Takashi, 2020. "Description of short circuit current of outdoor photovoltaic modules by multiple regression analysis under various solar irradiance levels," Renewable Energy, Elsevier, vol. 147(P1), pages 895-902.
    3. Wang, Shuhao & Peng, Jinqing & Wang, Meng & Xue, Peng & Luo, Yimo & Ma, Tao & Zhao, Yifan, 2023. "Evaluation of the energy conversion performance of different photovoltaic materials with measured solar spectral irradiance," Renewable Energy, Elsevier, vol. 219(P1).
    4. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    5. Atsu, Divine & Seres, Istvan & Aghaei, Mohammadreza & Farkas, Istvan, 2020. "Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan," Renewable Energy, Elsevier, vol. 162(C), pages 285-295.
    6. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    7. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    8. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    9. Rediske, Graciele & Michels, Leandro & Siluk, Julio Cezar Mairesse & Rigo, Paula Donaduzzi & Rosa, Carmen Brum & Lima, Andrei Cunha, 2024. "A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants," Applied Energy, Elsevier, vol. 354(PA).
    10. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    11. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.
    12. Chao Huang & Michael Edesess & Alain Bensoussan & Kwok L. Tsui, 2016. "Performance Analysis of a Grid-Connected Upgraded Metallurgical Grade Silicon Photovoltaic System," Energies, MDPI, vol. 9(5), pages 1-15, May.
    13. Chantana, Jakapan & Mano, Hiroyuki & Horio, Yuhei & Hishikawa, Yoshihiro & Minemoto, Takashi, 2017. "Spectral mismatch correction factor indicated by average photon energy for precise outdoor performance measurements of different-type photovoltaic modules," Renewable Energy, Elsevier, vol. 114(PB), pages 567-573.
    14. Mohammad Hossein Jahangir & Seyed Ali Mousavi & Ruhollah Asayesh Zarchi, 2021. "Implementing single- and multi-year sensitivity analyses to propose several feasible solutions for meeting the electricity demand in large-scale tourism sectors applying renewable systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14494-14527, October.
    15. Kim, Byungil & Kim, Changyoon, 2018. "Estimating the effect of module failures on the gross generation of a photovoltaic system using agent-based modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1019-1024.
    16. Mohamed Benghanem & Sofiane Haddad & Ahmed Alzahrani & Adel Mellit & Hamad Almohamadi & Muna Khushaim & Mohamed Salah Aida, 2023. "Evaluation of the Performance of Polycrystalline and Monocrystalline PV Technologies in a Hot and Arid Region: An Experimental Analysis," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    17. Neves, Luciano A. & Leite, Gabriel C. & MacKenzie, Roderick C.I. & Ferreira, Rafael A.M. & Porto, Matheus P., 2021. "A methodology to simulate solar cells electrical response using optical-electrical mathematical models and real solar spectra," Renewable Energy, Elsevier, vol. 164(C), pages 968-977.
    18. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    19. Hassan Daher, Daha & Gaillard, Léon & Ménézo, Christophe, 2022. "Experimental assessment of long-term performance degradation for a PV power plant operating in a desert maritime climate," Renewable Energy, Elsevier, vol. 187(C), pages 44-55.
    20. Schröder, M. & Abdin, Z. & Mérida, W., 2020. "Optimization of distributed energy resources for electric vehicle charging and fuel cell vehicle refueling," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:173-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.