IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp1203-1211.html
   My bibliography  Save this article

The cascade biorefinery approach for the valorization of the spent coffee grounds

Author

Listed:
  • Battista, Federico
  • Zanzoni, Serena
  • Strazzera, Giuseppe
  • Andreolli, Marco
  • Bolzonella, David

Abstract

Six million tons of Coffee Spent Grounds (SCG) are produced every year all around the world. Their physical and chemical characterization, rich in high value molecules and organic compounds, make SCG ideal for the recovery of bioactive molecules and bioenergy production according to the “cascade biorefinery approach”. This work investigates the effects of the implementation of sequential processes for the recovery of the coffee oil, rich in valuable molecules, and the productions of bioethanol and biogas from SCG. The use of a 50:50 (v/v) ethanol-iso-propanol mixture allowed a coffee oil recovery of about 16% w/w. In particular, the extracted coffee oil was rich in tocopherols (about 15 mg/100 g SCG). On the other hand, n-hexane showed a lower performance in terms of coffee oil extraction (10% w/w) but allowed for the extraction of different molecules: linoleic and palmitic acids (38% and 34% w/w of the coffee oil, respectively) and of Cafestol (383 mg/100g SCG) and Kahweol (194 mg/100g SCG). The extracted SCG underwent to an acid-enzymatic hydrolysis process followed by a solid/liquid separation. The liquid fraction was then used for the bioethanol production which reached the final concentration of 50 g/L, while the solid fraction was used for biogas production by Anaerobic Digestion. The final methane yield resulted in a production of about 250 NLCH4/kgVS. A complete train of operations, composing a biorefinery approach, can be therefore adopted to fully valorise this particular organic waste.

Suggested Citation

  • Battista, Federico & Zanzoni, Serena & Strazzera, Giuseppe & Andreolli, Marco & Bolzonella, David, 2020. "The cascade biorefinery approach for the valorization of the spent coffee grounds," Renewable Energy, Elsevier, vol. 157(C), pages 1203-1211.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1203-1211
    DOI: 10.1016/j.renene.2020.05.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030817X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Battista, Federico & Gomez Almendros, Mélanie & Rousset, Romain & Bouillon, Pierre-Antoine, 2019. "Enzymatic hydrolysis at high lignocellulosic content: Optimization of the mixing system geometry and of a fed-batch strategy to increase glucose concentration," Renewable Energy, Elsevier, vol. 131(C), pages 152-158.
    2. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    3. Battista, Federico & Mancini, Giuseppe & Ruggeri, Bernardo & Fino, Debora, 2016. "Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products," Renewable Energy, Elsevier, vol. 88(C), pages 401-407.
    4. Freitas de Medeiros, Eliane & da Silva Afonso, Marcela & Ziemann dos Santos, Marco Aurélio & Bento, Fátima Menezes & Quadro, Maurízio Silveira & Andreazza, Robson, 2019. "Physicochemical characterization of oil extraction from fishing waste for biofuel production," Renewable Energy, Elsevier, vol. 143(C), pages 471-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    2. Battista, Federico & Barampouti, Elli Maria & Mai, Sofia & Bolzonella, David & Malamis, Dimitris & Moustakas, Konstantinos & Loizidou, Maria, 2020. "Added-value molecules recovery and biofuels production from spent coffee grounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Cardarelli, Alessandro & Pinzi, Sara & Barbanera, Marco, 2022. "Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics," Renewable Energy, Elsevier, vol. 185(C), pages 704-716.
    4. Bartolucci, L. & Cordiner, S. & Di Carlo, A. & Gallifuoco, A. & Mele, P. & Mulone, V., 2024. "Platform chemicals recovery from spent coffee grounds aqueous-phase pyrolysis oil," Renewable Energy, Elsevier, vol. 220(C).
    5. Rajesh Banu, J. & Yukesh Kannah, R. & Dinesh Kumar, M. & Preethi, & Kavitha, S. & Gunasekaran, M. & Zhen, Guangyin & Awasthi, Mukesh Kumar & Kumar, Gopalakrishnan, 2021. "Spent coffee grounds based circular bioeconomy: Technoeconomic and commercialization aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolzonella, D. & Battista, F. & Mattioli, A. & Nicolato, C. & Frison, N. & Lampis, S., 2020. "Biological thermophilic post hydrolysis of digestate enhances the biogas production in the anaerobic digestion of agro-waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    3. Joana Silva & Rita Fragoso, 2023. "Enhanced Biomethanation: The Impact of Incorporating Fish Waste on the Co-Digestion of Pig Slurry and Orange Pomace," Energies, MDPI, vol. 16(16), pages 1-14, August.
    4. Rizzioli, Fabio & Magonara, Claudia & Mengoli, Gianmarco & Bolzonella, David & Battista, Federico, 2024. "Production, purification and recovery of caproic acid, Volatile fatty acids and methane from Opuntia ficus indica," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    5. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    6. Rafieenia, Razieh & Pivato, Alberto & Lavagnolo, Maria Cristina, 2019. "Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil," Renewable Energy, Elsevier, vol. 139(C), pages 1077-1085.
    7. Sharma, Sumit & Swain, Manas R. & Mishra, Abhishek & Mathur, Anshu S. & Gupta, Ravi P. & Puri, Suresh K. & Ramakumar, S.S.V. & Sharma, Ajay K., 2021. "High solid loading and multiple-fed simultaneous saccharification and co-fermentation (mf-SSCF) of rice straw for high titer ethanol production at low cost," Renewable Energy, Elsevier, vol. 179(C), pages 1915-1924.
    8. Vítor João Pereira Domingues Martinho, 2021. "Agri-Food Contexts in Mediterranean Regions: Contributions to Better Resources Management," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    9. Justyna Tarapata & Marcin Zieliński & Justyna Zulewska, 2022. "Valorization of Dairy By-Products: Efficiency of Energy Production from Biogas Obtained in Anaerobic Digestion of Ultrafiltration Permeates," Energies, MDPI, vol. 15(18), pages 1-15, September.
    10. Gábor Pintér, 2020. "The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study," Energies, MDPI, vol. 13(23), pages 1-14, December.
    11. Federico Battista & Nicola Frison & David Bolzonella, 2019. "Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications," Energies, MDPI, vol. 12(17), pages 1-13, August.
    12. Moraes, Paola S. & Igansi, Andrei V. & Cadaval, Tito R.S. & Pinto, Luiz A.A., 2020. "Biodiesel produced from crude, degummed, neutralized and bleached oils of Nile tilapia waste: Production efficiency, physical-chemical quality and economic viability," Renewable Energy, Elsevier, vol. 161(C), pages 110-119.
    13. Bertasini, Davide & Battista, Federico & Rizzioli, Fabio & Frison, Nicola & Bolzonella, David, 2023. "Decarbonization of the European natural gas grid using hydrogen and methane biologically produced from organic waste: A critical overview," Renewable Energy, Elsevier, vol. 206(C), pages 386-396.
    14. Ravi Kant Bhatia & Deepak Sakhuja & Shyam Mundhe & Abhishek Walia, 2020. "Renewable Energy Products through Bioremediation of Wastewater," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    15. Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
    16. Bañuelos, Jennifer A. & Velázquez-Hernández, I. & Guerra-Balcázar, M. & Arjona, N., 2018. "Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia Bigelovii as a renewable energy source," Renewable Energy, Elsevier, vol. 123(C), pages 125-134.
    17. Prabakar, Desika & Manimudi, Varshini T. & Suvetha K, Subha & Sampath, Swetha & Mahapatra, Durga Madhab & Rajendran, Karthik & Pugazhendhi, Arivalagan, 2018. "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 306-324.
    18. Yuan, Xinchuan & Chen, Xiangxue & Shen, Guannan & Chen, Sitong & Yu, Jianming & Zhai, Rui & Xu, Zhaoxian & Jin, Mingjie, 2022. "Densifying lignocellulosic biomass with sulfuric acid provides a durable feedstock with high digestibility and high fermentability for cellulosic ethanol production," Renewable Energy, Elsevier, vol. 182(C), pages 377-389.
    19. Battista, Federico & Barampouti, Elli Maria & Mai, Sofia & Bolzonella, David & Malamis, Dimitris & Moustakas, Konstantinos & Loizidou, Maria, 2020. "Added-value molecules recovery and biofuels production from spent coffee grounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Deng, Zhichao & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xianqing & Qiu, Sheng & Zhu, Xun, 2022. "A bio-inspired flexible squeezing reactor for efficient enzymatic hydrolysis of lignocellulosic biomass for bioenergy production," Renewable Energy, Elsevier, vol. 191(C), pages 92-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1203-1211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.