IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6829-d918268.html
   My bibliography  Save this article

Valorization of Dairy By-Products: Efficiency of Energy Production from Biogas Obtained in Anaerobic Digestion of Ultrafiltration Permeates

Author

Listed:
  • Justyna Tarapata

    (Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Warszawska 117, 10-719 Olsztyn, Poland)

  • Justyna Zulewska

    (Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland)

Abstract

This study aimed at evaluating the methane potential of two ultrafiltration (UFP) and two diafiltration (DFP) permeates generated during milk protein concentration. The permeates were characterized by a different chemical oxygen demand (COD) ranging from 7610 mg O 2 /L to 57,020 mg O 2 /L. The CH 4 production efficiency was recorded for 20 days and ranged from 149 to 181 NL/kg COD added . Moreover, the possibilities of the use of UFP/DFP to produce electricity and heat with a combined heat and power (CHP) unit was analyzed to underline the impact of the implementation of anaerobic digestion on the electric and thermal energy requirements of a dairy plant. It was concluded that the application of anaerobic digestion to UFP and DFP treatments generates the energy required to cover all the large-scale dairy plant energy demands and produce extra income. The amount of permeates generated annually in the analyzed dairy plant will enable the production of approx. 22,699 MWh of electricity and 85,516 GJ of heat. This would require a biogas plant with a 3 MW yield. Additionally, the lactose production from UFP/DFP was considered as an alternative or parallel solution for its management. The study confirmed that the biogas and lactose production from UFP/DFP enables plant owners to adjust a plant’s management towards one of these two solutions.

Suggested Citation

  • Justyna Tarapata & Marcin Zieliński & Justyna Zulewska, 2022. "Valorization of Dairy By-Products: Efficiency of Energy Production from Biogas Obtained in Anaerobic Digestion of Ultrafiltration Permeates," Energies, MDPI, vol. 15(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6829-:d:918268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Kozłowski, Kamil & Pietrzykowski, Maciej & Czekała, Wojciech & Dach, Jacek & Kowalczyk-Juśko, Alina & Jóźwiakowski, Krzysztof & Brzoski, Michał, 2019. "Energetic and economic analysis of biogas plant with using the dairy industry waste," Energy, Elsevier, vol. 183(C), pages 1023-1031.
    3. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    4. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    5. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    6. Zemo, Kahsay Haile & Panduro, Toke Emil & Termansen, Mette, 2019. "Impact of biogas plants on rural residential property values and implications for local acceptance," Energy Policy, Elsevier, vol. 129(C), pages 1121-1131.
    7. Cieślik, Marta & Dach, Jacek & Lewicki, Andrzej & Smurzyńska, Anna & Janczak, Damian & Pawlicka-Kaczorowska, Joanna & Boniecki, Piotr & Cyplik, Paweł & Czekała, Wojciech & Jóźwiakowski, Krzysztof, 2016. "Methane fermentation of the maize straw silage under meso- and thermophilic conditions," Energy, Elsevier, vol. 115(P2), pages 1495-1502.
    8. Bolen, T.J. & Hasan, Mahmudul & Conway, Timothy & Stéphane Yaméogo, Djigui David & Sanchez, Pablo & Rahman, Arifur & Azam, Hossain, 2022. "Feasibility assessment of biogas production from the anaerobic co-digestion of cheese whey, grease interceptor waste and pulped food waste for WRRF," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    2. Pochwatka, Patrycja & Rozakis, Stelios & Kowalczyk-Juśko, Alina & Czekała, Wojciech & Qiao, Wei & Nägele, Hans-Joachim & Janczak, Damian & Mazurkiewicz, Jakub & Mazur, Andrzej & Dach, Jacek, 2023. "The energetic and economic analysis of demand-driven biogas plant investment possibility in dairy farm," Energy, Elsevier, vol. 283(C).
    3. Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
    4. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    5. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    6. Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
    7. Erika Conde & Prasad Kaparaju, 2022. "Effect of Temporal Variation in Chemical Composition on Methane Yields of Rendering Plant Wastewater," Energies, MDPI, vol. 15(19), pages 1-16, October.
    8. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    9. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    10. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    11. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    12. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    13. Sayedin, Farid & Kermanshahi-pour, Azadeh & He, Quan Sophia, 2019. "Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio," Renewable Energy, Elsevier, vol. 135(C), pages 975-983.
    14. Jakub Frankowski & Wojciech Czekała, 2023. "Agricultural Plant Residues as Potential Co-Substrates for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
    15. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    16. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    17. Federico Battista & Nicola Frison & David Bolzonella, 2019. "Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications," Energies, MDPI, vol. 12(17), pages 1-13, August.
    18. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    19. Chen, Miao & Liu, Shujun & Yuan, Xufeng & Li, Qing X. & Wang, Fengzhong & Xin, Fengjiao & Wen, Boting, 2021. "Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar," Renewable Energy, Elsevier, vol. 163(C), pages 357-367.
    20. Krekel, Christian & Rechlitz, Julia & Rode, Johannes & Zerrahn, Alexander, 2020. "Quantifying the Externalities of Renewable Energy Plants Using Wellbeing Data: The Case of Biogas," IZA Discussion Papers 13959, Institute of Labor Economics (IZA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6829-:d:918268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.