IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v190y2024ipbs1364032123009413.html
   My bibliography  Save this article

Production, purification and recovery of caproic acid, Volatile fatty acids and methane from Opuntia ficus indica

Author

Listed:
  • Rizzioli, Fabio
  • Magonara, Claudia
  • Mengoli, Gianmarco
  • Bolzonella, David
  • Battista, Federico

Abstract

Opuntia ficus-indica can grow in arid and semi-arid environments characterized by low water and nutrients availability. These features make it a more sustainable alternative to the common energy crops for biorefinery purposes. This work focused on the potential benefits of anaerobic processes applied to this plant. Specifically, it considered i) the substrate preparation, demonstrating the effect of the apparent viscosity on the process; ii) the evaluation of biomethane, Volatile Fatty Acids (VFAs), and caproic acid production in semi-continuous mode at different hydraulic retention times; iii) the purification of the Fatty Acids-rich output through pressure-driven membrane filtration. The rheology analysis found that a 5 %w/w water dilution of the substrate is needed to lower the apparent viscosity to 173 cP, which is below the acceptable apparent viscosity level of 200 cP for a good bioreactor mixing. Keeping this condition, the semi-continuous trials with the best biomethane performance was at HRT of 20 days, with 210 mLCH4/gVS and 232 mLCH4/gCODin of production and specific yield, respectively. The VFAs and caproic acid production reached their best at Hydraulic Retention Time 5, with 26 and 7.9 gCOD/L of VFAs and caproic acid, corresponding to specific yields of 79 and 30 % respectively. Pressure-driven filtration at 330 kDa allowed to obtain a permeate with a VFAs and caproic acid content of 96.72%w/w. Finally, the adsorption and desorption tests allowed to separate caproic acid from the permeate and to concentrate it from about 7.5 gCOD/L to about 26 gCOD/L.

Suggested Citation

  • Rizzioli, Fabio & Magonara, Claudia & Mengoli, Gianmarco & Bolzonella, David & Battista, Federico, 2024. "Production, purification and recovery of caproic acid, Volatile fatty acids and methane from Opuntia ficus indica," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
  • Handle: RePEc:eee:rensus:v:190:y:2024:i:pb:s1364032123009413
    DOI: 10.1016/j.rser.2023.114083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123009413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    2. Federico Battista & Nicola Frison & David Bolzonella, 2019. "Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications," Energies, MDPI, vol. 12(17), pages 1-13, August.
    3. Joana Silva & Rita Fragoso, 2023. "Enhanced Biomethanation: The Impact of Incorporating Fish Waste on the Co-Digestion of Pig Slurry and Orange Pomace," Energies, MDPI, vol. 16(16), pages 1-14, August.
    4. Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
    5. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    6. Scano, Efisio Antonio & Grosso, Massimiliano & Pistis, Agata & Carboni, Gianluca & Cocco, Daniele, 2021. "An in-depth analysis of biogas production from locally agro-industrial by-products and residues. An Italian case," Renewable Energy, Elsevier, vol. 179(C), pages 308-318.
    7. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    8. Bolzonella, D. & Battista, F. & Mattioli, A. & Nicolato, C. & Frison, N. & Lampis, S., 2020. "Biological thermophilic post hydrolysis of digestate enhances the biogas production in the anaerobic digestion of agro-waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Erika Conde & Prasad Kaparaju, 2022. "Effect of Temporal Variation in Chemical Composition on Methane Yields of Rendering Plant Wastewater," Energies, MDPI, vol. 15(19), pages 1-16, October.
    10. Giovanni Ferrari & Andrea Pezzuolo & Abdul-Sattar Nizami & Francesco Marinello, 2020. "Bibliometric Analysis of Trends in Biomass for Bioenergy Research," Energies, MDPI, vol. 13(14), pages 1-21, July.
    11. Audrey Lallement & Christine Peyrelasse & Camille Lagnet & Abdellatif Barakat & Blandine Schraauwers & Samuel Maunas & Florian Monlau, 2023. "A Detailed Database of the Chemical Properties and Methane Potential of Biomasses Covering a Large Range of Common Agricultural Biogas Plant Feedstocks," Waste, MDPI, vol. 1(1), pages 1-33, January.
    12. Giovanni Ferrari & Federico Ioverno & Marco Sozzi & Francesco Marinello & Andrea Pezzuolo, 2021. "Land-Use Change and Bioenergy Production: Soil Consumption and Characterization of Anaerobic Digestion Plants," Energies, MDPI, vol. 14(13), pages 1-14, July.
    13. Justyna Tarapata & Marcin Zieliński & Justyna Zulewska, 2022. "Valorization of Dairy By-Products: Efficiency of Energy Production from Biogas Obtained in Anaerobic Digestion of Ultrafiltration Permeates," Energies, MDPI, vol. 15(18), pages 1-15, September.
    14. Gábor Pintér, 2020. "The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study," Energies, MDPI, vol. 13(23), pages 1-14, December.
    15. Battista, Federico & Zanzoni, Serena & Strazzera, Giuseppe & Andreolli, Marco & Bolzonella, David, 2020. "The cascade biorefinery approach for the valorization of the spent coffee grounds," Renewable Energy, Elsevier, vol. 157(C), pages 1203-1211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:190:y:2024:i:pb:s1364032123009413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.