IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp278-289.html
   My bibliography  Save this article

Utilization of solar energy and climate control systems for enhancing poultry houses productivity

Author

Listed:
  • Gad, S.
  • El-Shazly, M.A.
  • Wasfy, Kamal I.
  • Awny, A.

Abstract

Poultry housing is chosen for the development because it has the highest portion of energy consumption. Solar energy and climate control systems are utilized for producing the highest productivity and conversion rate poultry housing comparing with the conventional methods. Thermal analysis of solar heating unit and photovoltaic is conducted to find out their thermal efficiencies. Experiments are conducted under the following conditions using three power operating systems [flat-plate solar collector + electricity (power operating), flat plate solar collector + photovoltaic and conventional system (depending on only electricity)] and fan stopping periods (2, 5 and 8 min). The poultry house performance was evaluated in terms of relative humidity, ammonia concentration, poultry production, feed conversion rate, required power and production cost. Based on the theoretical analysis, the efficiency of the solar heating system and photovoltaic cells was about 71.6% and 12.5%, respectively. Experimental results reveal that the optimum conditions for enhancing the poultry production (2.29 kg) with conversion rate (1.45 kg feed per kg gain), ammonia concentration at the fifth week (13.65 ppm), production cost (1.12 US $/kg) are achieved by using power operating system of flat-plate solar collector integrated with photovoltaic under 2 min fan stopping periods.

Suggested Citation

  • Gad, S. & El-Shazly, M.A. & Wasfy, Kamal I. & Awny, A., 2020. "Utilization of solar energy and climate control systems for enhancing poultry houses productivity," Renewable Energy, Elsevier, vol. 154(C), pages 278-289.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:278-289
    DOI: 10.1016/j.renene.2020.02.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120302834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    2. Bazen, Ernest F. & Brown, Matthew A., 2009. "Feasibility of solar technology (photovoltaic) adoption: A case study on Tennessee's poultry industry," Renewable Energy, Elsevier, vol. 34(3), pages 748-754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansour Jalali & Ahmad Banakar & Behfar Farzaneh & Mehdi Montazeri, 2023. "Reducing Energy Consumption in a Poultry Farm by Designing and Optimizing the Solar Heating/Photovoltaic System," Sustainability, MDPI, vol. 15(7), pages 1-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    3. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    4. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    5. Arsénio José Mindú & Jó António Capece & Rui Esteves Araújo & Armando C. Oliveira, 2021. "Feasibility of Utilizing Photovoltaics for Irrigation Purposes in Moamba, Mozambique," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    6. Mahesh Vinayak Hadole & Kamlesh Narayan Tiwari & Prabodh Bajpai, 2021. "Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6722-6733, May.
    7. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    8. Vitor Fernão Pires & Daniel Foito & Armando Cordeiro & Miguel Chaves & Armando J. Pires, 2022. "PV Generator-Fed Water Pumping System Based on a SRM with a Multilevel Fault-Tolerant Converter," Energies, MDPI, vol. 15(3), pages 1-19, January.
    9. Pali, Bahadur Singh & Vadhera, Shelly, 2021. "A novel approach for hydropower generation using photovoltaic electricity as driving energy," Applied Energy, Elsevier, vol. 302(C).
    10. Ben Ammar, Rim & Ben Ammar, Mohsen & Oualha, Abdelmajid, 2020. "Photovoltaic power forecast using empirical models and artificial intelligence approaches for water pumping systems," Renewable Energy, Elsevier, vol. 153(C), pages 1016-1028.
    11. Sajjad Miran & Muhammad Tamoor & Tayybah Kiren & Faakhar Raza & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    12. Ahmed, Eihab E.E. & Demirci, Alpaslan, 2022. "Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems," Energy, Elsevier, vol. 252(C).
    13. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    14. Vezin, T. & Meunier, S. & Quéval, L. & Cherni, J.A. & Vido, L. & Darga, A. & Dessante, P. & Kitanidis, P.K. & Marchand, C., 2020. "Borehole water level model for photovoltaic water pumping systems," Applied Energy, Elsevier, vol. 258(C).
    15. Habchi, A. & Hartiti, B. & Labrim, H. & Fadili, S. & Thevenin, P. & Ntsoenzok, E. & Faddouli, A., 2023. "Perfect stabilisation of the electrical efficiency of a set of semi-transparent photovoltaic panels using a smart cooling system," Renewable Energy, Elsevier, vol. 215(C).
    16. Miguel Ángel Pardo Picazo & Juan Manzano Juárez & Diego García-Márquez, 2018. "Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    17. Tiwari, Arunendra K. & Kalamkar, Vilas R., 2018. "Effects of total head and solar radiation on the performance of solar water pumping system," Renewable Energy, Elsevier, vol. 118(C), pages 919-927.
    18. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    19. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    20. Chandel, Rahul & Chandel, Shyam Singh & Malik, Prashant, 2022. "Perspective of new distributed grid connected roof top solar photovoltaic power generation policy interventions in India," Energy Policy, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:278-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.