IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p720-d728356.html
   My bibliography  Save this article

PV Generator-Fed Water Pumping System Based on a SRM with a Multilevel Fault-Tolerant Converter

Author

Listed:
  • Vitor Fernão Pires

    (SustainRD, EST Setubal, Polytechnic Institute of Setúbal, 2914-508 Setúbal, Portugal
    Instituto de Engenharia de Sistemas e Computadores—Investigação e Desenvolvimento em Lisboa (INESC-ID), 1000-029 Lisboa, Portugal)

  • Daniel Foito

    (SustainRD, EST Setubal, Polytechnic Institute of Setúbal, 2914-508 Setúbal, Portugal
    Centre of Technology and Systems (CTS-UNINOVA), 2829-516 Caparica, Portugal)

  • Armando Cordeiro

    (SustainRD, EST Setubal, Polytechnic Institute of Setúbal, 2914-508 Setúbal, Portugal
    Instituto de Engenharia de Sistemas e Computadores—Investigação e Desenvolvimento em Lisboa (INESC-ID), 1000-029 Lisboa, Portugal
    ISEL—Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal)

  • Miguel Chaves

    (Instituto de Engenharia de Sistemas e Computadores—Investigação e Desenvolvimento em Lisboa (INESC-ID), 1000-029 Lisboa, Portugal
    ISEL—Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal)

  • Armando J. Pires

    (SustainRD, EST Setubal, Polytechnic Institute of Setúbal, 2914-508 Setúbal, Portugal
    Centre of Technology and Systems (CTS-UNINOVA), 2829-516 Caparica, Portugal)

Abstract

This paper presents a pumping system supplied by a PV generator that is based on a switched reluctance machine (SRM). Water pumping systems are fundamental in many applications. Most of them can be used only during the day; therefore, they are highly recommended for use with PV generators. For the interface between the PV panels and the motor, a new multilevel converter is proposed. This converter is designed in order to ensure fault-tolerant capability for open switch faults. The converter is based on two three-level inverters, with some extra switches. Moreover, to reduce the number of switches, the converter is designed to provide inverse currents in the motor windings. Due to the characteristics of this motor, the inverse currents do not change the torque direction. In this way, it was possible to obtain an SRM drive with fault-tolerant capability for transistor faults; it is also a low-cost solution, due to the reduced number of switches and drives. These characteristics of fault-tolerant capability and low cost are important in applications such as water pumping systems supplied by PV generators. The proposed system was verified by several tests that were carried out by a simulation program. The experimental results, obtained from a laboratory prototype, are also presented, with the purpose of validating the simulation tests.

Suggested Citation

  • Vitor Fernão Pires & Daniel Foito & Armando Cordeiro & Miguel Chaves & Armando J. Pires, 2022. "PV Generator-Fed Water Pumping System Based on a SRM with a Multilevel Fault-Tolerant Converter," Energies, MDPI, vol. 15(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:720-:d:728356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Periasamy, Packiam & Jain, N.K. & Singh, I.P., 2015. "A review on development of photovoltaic water pumping system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 918-925.
    2. Ludmil Stoyanov & Ivan Bachev & Zahari Zarkov & Vladimir Lazarov & Gilles Notton, 2021. "Multivariate Analysis of a Wind–PV-Based Water Pumping Hybrid System for Irrigation Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    3. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anouar Belahcen & Armando Pires & Vitor Fernão Pires, 2023. "Magnetic Material Modelling of Electrical Machines," Energies, MDPI, vol. 16(2), pages 1-3, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    2. Desikan Ramesh & Mohanrangan Chandrasekaran & Raga Palanisamy Soundararajan & Paravaikkarasu Pillai Subramanian & Vijayakumar Palled & Deivasigamani Praveen Kumar, 2022. "Solar-Powered Plant Protection Equipment: Perspective and Prospects," Energies, MDPI, vol. 15(19), pages 1-21, October.
    3. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    4. Islam, Md. Rabiul & Sarker, Pejush Chandra & Ghosh, Subarto Kumar, 2017. "Prospect and advancement of solar irrigation in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 406-422.
    5. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    7. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    8. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    9. Maammeur, H. & Hamidat, A. & Loukarfi, L. & Missoum, M. & Abdeladim, K. & Nacer, T., 2017. "Performance investigation of grid-connected PV systems for family farms: case study of North-West of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1208-1220.
    10. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    11. Agir, Seven & Derin-Gure, Pinar & Senturk, Bilge, 2023. "Farmers’ perspectives on challenges and opportunities of agrivoltaics in Turkiye: An institutional perspective," Renewable Energy, Elsevier, vol. 212(C), pages 35-49.
    12. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    13. Imad H. Ibrik, 2020. "Techno-economic Feasibility of Energy Supply of Water Pumping in Palestine by Photovoltaic-systems, Diesel Generators and Electric Grid," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 69-75.
    14. Arsénio José Mindú & Jó António Capece & Rui Esteves Araújo & Armando C. Oliveira, 2021. "Feasibility of Utilizing Photovoltaics for Irrigation Purposes in Moamba, Mozambique," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    15. Mahesh Vinayak Hadole & Kamlesh Narayan Tiwari & Prabodh Bajpai, 2021. "Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6722-6733, May.
    16. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik R., 2020. "Towards a solar-hydro based generation: The case of Switzerland," Energy Policy, Elsevier, vol. 138(C).
    17. Rahman, Syed Mahbubur & Mori, Akihisa & Rahman, Syed Mustafizur, 2022. "How does climate adaptation co-benefits help scale-up solar-powered irrigation? A case of the Barind Tract, Bangladesh," Renewable Energy, Elsevier, vol. 182(C), pages 1039-1048.
    18. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    19. Elshurafa, Amro M. & Alatawi, Hatem & Hasanov, Fakhri J. & Algahtani, Goblan J. & Felder, Frank A., 2022. "Cost, emission, and macroeconomic implications of diesel displacement in the Saudi agricultural sector: Options and policy insights," Energy Policy, Elsevier, vol. 168(C).
    20. Closas, Alvar & Rap, Edwin, 2017. "Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations," Energy Policy, Elsevier, vol. 104(C), pages 33-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:720-:d:728356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.