IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp1250-1265.html
   My bibliography  Save this article

Exergoeconomic analysis of zeotropic mixture on the new proposed organic Rankine cycle for energy production from geothermal resources

Author

Listed:
  • Samadi, Fereshteh
  • Kazemi, Neda

Abstract

In this study, the performance of Isobutane/Isopentane (zeotropic mixture) is studied in the new proposed Organic Rankine Cycle (NORC). Operating parameters included temperatures of two series evaporators and regenerative, degree of superheating, and pinch point temperature difference in the first evaporator are optimized with multi-objective functions i.e., exergy as thermodynamic, Specific Investment Cost (SIC) as economic and exergoeconomic as the third objective function that considered exergy and SIC simultaneously. Optimization results for Isobutane/Isopentane indicate that the value of exergy has a sharp decrease when the mole fraction of Isobutane increases to 0.5, and after that, the exergy amount rises significantly and reaches a peak at 54.584% for pure Isobutane. Also, return on investment (ROI) is employed as an economic indicator to get the center of attention in economic proficiency by utilizing Isobutane/Isopentane in NORC configuration according to the exergoeconomic results for fifteen countries as two groups of developed and developing in order to compare profitability all around the world. The results represent that, by the growing of Isobutane mole fraction in Isobutane- Isopentane mixture, ROI indicator is reduced. The maximum and the minimum value of ROI are related to Germany (57.64%) and India (4.09%), respectively.

Suggested Citation

  • Samadi, Fereshteh & Kazemi, Neda, 2020. "Exergoeconomic analysis of zeotropic mixture on the new proposed organic Rankine cycle for energy production from geothermal resources," Renewable Energy, Elsevier, vol. 152(C), pages 1250-1265.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1250-1265
    DOI: 10.1016/j.renene.2020.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120300434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Min-Hsiung & Yeh, Rong-Hua, 2016. "Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application," Renewable Energy, Elsevier, vol. 85(C), pages 1201-1213.
    2. Xi, Huan & Li, Ming-Jia & Xu, Chao & He, Ya-Ling, 2013. "Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm," Energy, Elsevier, vol. 58(C), pages 473-482.
    3. Xiao, Lan & Wu, Shuang-Ying & Yi, Tian-Tian & Liu, Chao & Li, You-Rong, 2015. "Multi-objective optimization of evaporation and condensation temperatures for subcritical organic Rankine cycle," Energy, Elsevier, vol. 83(C), pages 723-733.
    4. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    5. Le, Van Long & Kheiri, Abdelhamid & Feidt, Michel & Pelloux-Prayer, Sandrine, 2014. "Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid," Energy, Elsevier, vol. 78(C), pages 622-638.
    6. Liu, Qiang & Shen, Aijing & Duan, Yuanyuan, 2015. "Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids," Applied Energy, Elsevier, vol. 148(C), pages 410-420.
    7. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    8. Li, Tailu & Wang, Qiulin & Zhu, Jialing & Hu, Kaiyong & Fu, Wencheng, 2015. "Thermodynamic optimization of organic Rankine cycle using two-stage evaporation," Renewable Energy, Elsevier, vol. 75(C), pages 654-664.
    9. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    10. Yildirim, Deniz & Ozgener, Leyla, 2012. "Thermodynamics and exergoeconomic analysis of geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6438-6454.
    11. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    12. Kanoglu, Mehmet & Bolatturk, Ali, 2008. "Performance and parametric investigation of a binary geothermal power plant by exergy," Renewable Energy, Elsevier, vol. 33(11), pages 2366-2374.
    13. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    14. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.
    15. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamoushaki, Moein & Fiaschi, Daniele & Manfrida, Giampaolo & Talluri, Lorenzo, 2022. "Energy, exergy, economic and environmental (4E) analyses of a geothermal power plant with NCGs reinjection," Energy, Elsevier, vol. 244(PA).
    2. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    3. Wang, Enhua & Zhang, Mengru & Meng, Fanxiao & Zhang, Hongguang, 2022. "Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine," Energy, Elsevier, vol. 243(C).
    4. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    5. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    6. Liu, Liuchen & Wu, Jinlu & Zhong, Fen & Gao, Naiping & Cui, Guomin, 2021. "Development of a novel cogeneration system by combing organic rankine cycle and heat pump cycle for waste heat recovery," Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    2. Yang, Fubin & Zhang, Hongguang & Bei, Chen & Song, Songsong & Wang, Enhua, 2015. "Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator," Energy, Elsevier, vol. 91(C), pages 128-141.
    3. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    4. Kazemi, Shabnam & Nor, Mohamad Iskandr Mohamad & Teoh, Wen Hui, 2020. "Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production," Energy, Elsevier, vol. 193(C).
    5. Hongjin Wang & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Chen Bei & Kai Yang, 2015. "Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization," Energies, MDPI, vol. 8(9), pages 1-26, September.
    6. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    7. Feng, Yongqiang & Hung, TzuChen & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings," Energy, Elsevier, vol. 93(P2), pages 2018-2029.
    8. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    9. Yu, Haoshui & Eason, John & Biegler, Lorenz T. & Feng, Xiao, 2017. "Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery," Energy, Elsevier, vol. 119(C), pages 322-333.
    10. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    11. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    12. Shuang Wang & Wei Zhang & Yong-Qiang Feng & Xin Wang & Qian Wang & Yu-Zhuang Liu & Yu Wang & Lin Yao, 2020. "Entropy, Entransy and Exergy Analysis of a Dual-Loop Organic Rankine Cycle (DORC) Using Mixture Working Fluids for Engine Waste Heat Recovery," Energies, MDPI, vol. 13(6), pages 1-25, March.
    13. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    14. Lazzaretto, Andrea & Manente, Giovanni & Toffolo, Andrea, 2018. "SYNTHSEP: A general methodology for the synthesis of energy system configurations beyond superstructures," Energy, Elsevier, vol. 147(C), pages 924-949.
    15. Sarkar, Jahar & Bhattacharyya, Souvik, 2015. "Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study," Energy, Elsevier, vol. 90(P2), pages 1618-1625.
    16. Mokhtari, Hamid & Hadiannasab, Hasti & Mostafavi, Mostafa & Ahmadibeni, Ali & Shahriari, Behrooz, 2016. "Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger," Energy, Elsevier, vol. 102(C), pages 260-275.
    17. Jesper G. Andreasen & Martin R. Kærn & Leonardo Pierobon & Ulrik Larsen & Fredrik Haglind, 2016. "Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids," Energies, MDPI, vol. 9(5), pages 1-15, April.
    18. Li, Tailu & Yuan, Zhenhe & Li, Wei & Yang, Junlan & Zhu, Jialing, 2016. "Strengthening mechanisms of two-stage evaporation strategy on system performance for organic Rankine cycle," Energy, Elsevier, vol. 101(C), pages 532-540.
    19. Songsong Song & Hongguang Zhang & Rui Zhao & Fanxiao Meng & Hongda Liu & Jingfu Wang & Baofeng Yao, 2017. "Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine," Energies, MDPI, vol. 10(4), pages 1-23, April.
    20. Javanshir, Alireza & Sarunac, Nenad, 2017. "Thermodynamic analysis of a simple Organic Rankine Cycle," Energy, Elsevier, vol. 118(C), pages 85-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1250-1265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.