IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics036054421932417x.html
   My bibliography  Save this article

Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production

Author

Listed:
  • Kazemi, Shabnam
  • Nor, Mohamad Iskandr Mohamad
  • Teoh, Wen Hui

Abstract

Organic Rankine cycle (ORC) is a promising technology for electricity generation by utilizing heat sources at low to moderate temperatures. In the present work, an ionic liquid (1-butylpyridinium tetrafluoroborate, C9H14NBF4), a known green chemical and non-volatile compound with good thermal and chemical stability, and significant heat capacity are utilized as a geothermal fluid. Simulation and optimization were conducted for a basic ORC, a regenerative organic Rankine cycle (RORC) and a two-stage evaporative organic Rankine cycle (TSORC) by maximizing exergy efficiency and minimizing specific investment cost. The operating parameters considered in the optimization exercise were evaporative and regenerative temperatures, pinch point temperature difference of evaporators and the degree of superheat. Peng Robinson equation of state was used and isobutane (R-600a) and butane (R-600) were selected as working fluids. Comparisons were made between the performance of ORCs when C9H14NBF4 and water were individually used as a geothermal fluid. Utilization of an ionic liquid improved the performance of the three ORC configurations with the best performance generated from a basic ORC with exergy efficiency of 82.35% (R-600) and 87.70% (R-600a). From an economic viewpoint, the amount of specific investment cost (SIC) is comparatively lower when ionic liquid is used as a geothermal fluid.

Suggested Citation

  • Kazemi, Shabnam & Nor, Mohamad Iskandr Mohamad & Teoh, Wen Hui, 2020. "Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s036054421932417x
    DOI: 10.1016/j.energy.2019.116722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421932417X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    2. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    3. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    4. Yang, Min-Hsiung & Yeh, Rong-Hua, 2016. "Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application," Renewable Energy, Elsevier, vol. 85(C), pages 1201-1213.
    5. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    6. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    7. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    8. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    9. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    10. Li, Tailu & Zhang, Zhigang & Lu, Jian & Yang, Junlan & Hu, Yujie, 2015. "Two-stage evaporation strategy to improve system performance for organic Rankine cycle," Applied Energy, Elsevier, vol. 150(C), pages 323-334.
    11. Zhai, Huixing & Shi, Lin & An, Qingsong, 2014. "Influence of working fluid properties on system performance and screen evaluation indicators for geothermal ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 74(C), pages 2-11.
    12. Xinyu Li & Tao Liu & Lin Chen, 2018. "Thermodynamic Performance Analysis of an Improved Two-Stage Organic Rankine Cycle," Energies, MDPI, vol. 11(11), pages 1-11, October.
    13. Javanshir, Alireza & Sarunac, Nenad, 2017. "Thermodynamic analysis of a simple Organic Rankine Cycle," Energy, Elsevier, vol. 118(C), pages 85-96.
    14. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    15. Li, Tailu & Wang, Qiulin & Zhu, Jialing & Hu, Kaiyong & Fu, Wencheng, 2015. "Thermodynamic optimization of organic Rankine cycle using two-stage evaporation," Renewable Energy, Elsevier, vol. 75(C), pages 654-664.
    16. Le, Van Long & Feidt, Michel & Kheiri, Abdelhamid & Pelloux-Prayer, Sandrine, 2014. "Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids," Energy, Elsevier, vol. 67(C), pages 513-526.
    17. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    18. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    19. Xiao, Lan & Wu, Shuang-Ying & Yi, Tian-Tian & Liu, Chao & Li, You-Rong, 2015. "Multi-objective optimization of evaporation and condensation temperatures for subcritical organic Rankine cycle," Energy, Elsevier, vol. 83(C), pages 723-733.
    20. Hærvig, J. & Sørensen, K. & Condra, T.J., 2016. "Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery," Energy, Elsevier, vol. 96(C), pages 592-602.
    21. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Dongyu & Liu, Qiang & Ji, Zhongli, 2022. "Effects of two-phase expander on the thermoeconomics of organic double-flash cycles for geothermal power generation," Energy, Elsevier, vol. 239(PD).
    2. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    3. Yi Guo & Qi Wang & Maofei Geng & Xueyuan Peng & Jianmei Feng, 2023. "Effects of Liquid Density on the Gas-Liquid Interaction of the Ionic Liquid Compressor for Hydrogen Storage," Energies, MDPI, vol. 16(7), pages 1-20, April.
    4. Mahmoud, Montaser & Alkhedher, Mohammad & Ramadan, Mohamad & Naher, Sumsun & Pullen, Keith, 2022. "An investigation on organic Rankine cycle incorporating a ground-cooled condenser: Working fluid selection and regeneration," Energy, Elsevier, vol. 249(C).
    5. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2021. "Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems," Energy, Elsevier, vol. 228(C).
    6. Liu, Liuchen & Wu, Jinlu & Zhong, Fen & Gao, Naiping & Cui, Guomin, 2021. "Development of a novel cogeneration system by combing organic rankine cycle and heat pump cycle for waste heat recovery," Energy, Elsevier, vol. 217(C).
    7. Li, Jian & Yang, Zhen & Shen, Jun & Duan, Yuanyuan, 2023. "Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    2. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    3. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    4. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    5. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    6. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    7. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    8. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    9. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    10. Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
    11. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    12. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    13. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    14. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    15. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    16. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    17. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    18. Yu, Haoshui & Eason, John & Biegler, Lorenz T. & Feng, Xiao, 2017. "Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery," Energy, Elsevier, vol. 119(C), pages 322-333.
    19. Kajurek, Jakub & Rusowicz, Artur & Grzebielec, Andrzej & Bujalski, Wojciech & Futyma, Kamil & Rudowicz, Zbigniew, 2019. "Selection of refrigerants for a modified organic Rankine cycle," Energy, Elsevier, vol. 168(C), pages 1-8.
    20. Cho, Soo-Yong & Cho, Chong-Hyun, 2015. "An experimental study on the organic Rankine cycle to determine as to how efficiently utilize fluctuating thermal energy," Renewable Energy, Elsevier, vol. 80(C), pages 73-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s036054421932417x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.