IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp1186-1191.html
   My bibliography  Save this article

The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation

Author

Listed:
  • Schuster, Christian Stefano

Abstract

Although solar energy is the fastest growing power technology, terrestrial solar panels typically fall behind their performance ratings established under standardised test-conditions. In particular, the angular-tilt of a panel can greatly affect its overall performance. Many studies thus aim to find the optimum tilt that maximises the annual insolation level. However, no widespread consensus has so far been found, partly because of different model assumptions applied. Here, a technique is proposed to use actual, historical solar spectra for the rigorous assessment of a panel’s tilt at a specific site. By combining multiple, free-accessible satellite-retrieved data products, the total all-sky insolation levels are tracked with a minutely changing global (hemispherical) solar spectrum over many years. While time-resolved annual insolation profiles can considerably vary among each other, the solar angle-resolved profile turns out to be robust to climatic conditions and is even site-independent for latitude-tilted panels. These findings can potentially unlock innovative yield optimisation methods.

Suggested Citation

  • Schuster, Christian Stefano, 2020. "The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation," Renewable Energy, Elsevier, vol. 152(C), pages 1186-1191.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1186-1191
    DOI: 10.1016/j.renene.2020.01.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120300951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fillion, R.M. & Riahi, A.R. & Edrisy, A., 2014. "A review of icing prevention in photovoltaic devices by surface engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 797-809.
    2. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    3. Khanna, Sourav & Reddy, K.S. & Mallick, Tapas K., 2017. "Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions," Energy, Elsevier, vol. 133(C), pages 887-899.
    4. Mehreen Gul & Yash Kotak & Tariq Muneer & Stoyanka Ivanova, 2018. "Enhancement of Albedo for Solar Energy Gain with Particular Emphasis on Overcast Skies," Energies, MDPI, vol. 11(11), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oh, Myeongchan & Kim, Jin-Young & Kim, Boyoung & Yun, Chang-Yeol & Kim, Chang Ki & Kang, Yong-Heack & Kim, Hyun-Goo, 2021. "Tolerance angle concept and formula for practical optimal orientation of photovoltaic panels," Renewable Energy, Elsevier, vol. 167(C), pages 384-394.
    2. Liu, Yujun & Yao, Ling & Jiang, Hou & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2022. "Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data," Renewable Energy, Elsevier, vol. 189(C), pages 1249-1258.
    3. Ramez Abdallah & Emad Natsheh & Adel Juaidi & Sufyan Samara & Francisco Manzano-Agugliaro, 2020. "A Multi-Level World Comprehensive Neural Network Model for Maximum Annual Solar Irradiation on a Flat Surface," Energies, MDPI, vol. 13(23), pages 1-31, December.
    4. Schuster, Christian Stefano & Koc, Mehmet & Yerci, Selcuk, 2022. "Analytic modelling of multi-junction solar cells via multi-diodes," Renewable Energy, Elsevier, vol. 184(C), pages 1033-1042.
    5. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    6. Chen, Xiaomeng & Wang, Yang & Yang, Xudong, 2023. "New biaxial approach to evaluate the optical performance of evacuated tube solar thermal collector," Energy, Elsevier, vol. 271(C).
    7. Xu, Luting & Long, Enshen & Wei, Jincheng & Cheng, Zhu & Zheng, Hanjie, 2021. "A new approach to determine the optimum tilt angle and orientation of solar collectors in mountainous areas with high altitude," Energy, Elsevier, vol. 237(C).
    8. Schuster, Christian Stefano, 2020. "Analytical framework for the assessment and modelling of multi-junction solar cells in the outdoors," Renewable Energy, Elsevier, vol. 152(C), pages 1367-1379.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    2. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    3. Mohammadpour, Javad & Salehi, Fatemeh & Sheikholeslami, Mohsen & Lee, Ann, 2022. "A computational study on nanofluid impingement jets in thermal management of photovoltaic panel," Renewable Energy, Elsevier, vol. 189(C), pages 970-982.
    4. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    5. Abdalqader Ahmad & Helena Navarro & Saikat Ghosh & Yulong Ding & Jatindra Nath Roy, 2021. "Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems," Energies, MDPI, vol. 14(14), pages 1-18, July.
    6. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    7. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    8. Pawluk, Robert E. & Chen, Yuxiang & She, Yuntong, 2019. "Photovoltaic electricity generation loss due to snow – A literature review on influence factors, estimation, and mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 171-182.
    9. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    10. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    11. Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    14. Kafka, Jennifer & Miller, Mark A., 2020. "The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use," Renewable Energy, Elsevier, vol. 155(C), pages 531-546.
    15. Idris Al Siyabi & Sourav Khanna & Tapas Mallick & Senthilarasu Sundaram, 2018. "Multiple Phase Change Material (PCM) Configuration for PCM-Based Heat Sinks—An Experimental Study," Energies, MDPI, vol. 11(7), pages 1-14, June.
    16. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    17. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    18. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    19. Visa, Ion & Burduhos, Bogdan & Neagoe, Mircea & Moldovan, Macedon & Duta, Anca, 2016. "Comparative analysis of the infield response of five types of photovoltaic modules," Renewable Energy, Elsevier, vol. 95(C), pages 178-190.
    20. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1186-1191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.