IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1000-1017.html
   My bibliography  Save this article

Performance comparison of a two-bed solar-driven adsorption chiller with optimal fixed and adaptive cycle times using a silica gel/water working pair

Author

Listed:
  • Qadir, Najam ul
  • Said, S.A.M.
  • Mansour, R.B.
  • Imran, Hussain
  • Khan, Mushtaq

Abstract

The previously published studies based on the performance prediction of solar-powered adsorption chillers incorporate a fixed cycle time which is either prespecified, or determined as a result of a numerical optimization procedure. However, the cycle time of a solar-powered commercial adsorption chiller cannot be expected to remain constant with the number of cycles owing to the continuously varying intensity of solar radiation from sunrise till sunset. This paper presents the first attempt of comparing the numerically predicted performance of a solar-powered two-bed silica gel/water adsorption chiller based on adaptive and fixed cycle time conditions using a two-stage iterative optimization. The adsorption/desorption (ads/des) stage for the adaptive cycle time condition is terminated as soon as the ads/des uptakes reach their corresponding equilibrium values, while the preheating/precooling (PH/PC) stage is ended as soon as the vapor pressure gradient inside either of the two beds becomes negligibly small. The optimal ads/des as well as the PH/PC times for the adaptive cycle time condition have been used as a baseline for maximizing system performance for the fixed cycle time condition using a two-stage iterative optimization, and the two optimized cycle time conditions have been compared in the context of commercial applications.

Suggested Citation

  • Qadir, Najam ul & Said, S.A.M. & Mansour, R.B. & Imran, Hussain & Khan, Mushtaq, 2020. "Performance comparison of a two-bed solar-driven adsorption chiller with optimal fixed and adaptive cycle times using a silica gel/water working pair," Renewable Energy, Elsevier, vol. 149(C), pages 1000-1017.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1000-1017
    DOI: 10.1016/j.renene.2019.10.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zbigniew Rogala & Piotr Kolasiński & Przemysław Błasiak, 2018. "The Influence of Operating Parameters on Adsorption/Desorption Characteristics and Performance of the Fluidised Desiccant Cooler," Energies, MDPI, vol. 11(6), pages 1-16, June.
    2. Marlinda & Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2010. "Performance Analysis of a Double-effect Adsorption Refrigeration Cycle with a Silica Gel/Water Working Pair," Energies, MDPI, vol. 3(11), pages 1-17, October.
    3. Gordeeva, Larisa & Aristov, Yuri, 2014. "Dynamic study of methanol adsorption on activated carbon ACM-35.4 for enhancing the specific cooling power of adsorptive chillers," Applied Energy, Elsevier, vol. 117(C), pages 127-133.
    4. Alam, K.C.A. & Akahira, A. & Hamamoto, Y. & Akisawa, A. & Kashiwagi, T., 2004. "A four-bed mass recovery adsorption refrigeration cycle driven by low temperature waste/renewable heat source," Renewable Energy, Elsevier, vol. 29(9), pages 1461-1475.
    5. Dakkama, H.J. & Elsayed, A. & AL-Dadah, R.K. & Mahmoud, S.M. & Youssef, P., 2017. "Integrated evaporator–condenser cascaded adsorption system for low temperature cooling using different working pairs," Applied Energy, Elsevier, vol. 185(P2), pages 2117-2126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basdanis, Thanasis & Tsimpoukis, Alexandros & Valougeorgis, Dimitris, 2021. "Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time," Renewable Energy, Elsevier, vol. 164(C), pages 362-374.
    2. Tomasz Bujok & Marcin Sowa & Piotr Boruta & Łukasz Mika & Karol Sztekler & Patryk Robert Chaja, 2022. "Possibilities of Integrating Adsorption Chiller with Solar Collectors for Polish Climate Zone," Energies, MDPI, vol. 15(17), pages 1-26, August.
    3. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Marcin Sowa, 2021. "Effect of Metal Additives in the Bed on the Performance Parameters of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(21), pages 1-27, November.
    4. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    2. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    3. Yuan, Yanping & Zhang, Haiquan & Yang, Fan & Zhang, Nan & Cao, Xiaoling, 2016. "Inorganic composite sorbents for water vapor sorption: A research progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 761-776.
    4. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    5. Solmuş, İsmail & Yamalı, Cemil & Yıldırım, Cihan & Bilen, Kadir, 2015. "Transient behavior of a cylindrical adsorbent bed during the adsorption process," Applied Energy, Elsevier, vol. 142(C), pages 115-124.
    6. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    7. Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
    8. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    9. Marlinda & Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2010. "Performance Analysis of a Double-effect Adsorption Refrigeration Cycle with a Silica Gel/Water Working Pair," Energies, MDPI, vol. 3(11), pages 1-17, October.
    10. N'Tsoukpoe, Kokouvi Edem & Restuccia, Giovanni & Schmidt, Thomas & Py, Xavier, 2014. "The size of sorbents in low pressure sorption or thermochemical energy storage processes," Energy, Elsevier, vol. 77(C), pages 983-998.
    11. Dakkama, H.J. & Elsayed, A. & AL-Dadah, R.K. & Mahmoud, S.M. & Youssef, P., 2017. "Integrated evaporator–condenser cascaded adsorption system for low temperature cooling using different working pairs," Applied Energy, Elsevier, vol. 185(P2), pages 2117-2126.
    12. Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.
    13. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    14. Korhammer, Kathrin & Neumann, Karsten & Opel, Oliver & Ruck, Wolfgang K.L., 2018. "Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC," Applied Energy, Elsevier, vol. 230(C), pages 1255-1278.
    15. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Natalia Sorokova & Vladimir Didur & Miroslav Variny, 2022. "Mathematical Modeling of Heat and Mass Transfer during Moisture–Heat Treatment of Castor Beans to Improve the Quality of Vegetable Oil," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
    17. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamic optimization of adsorptive chillers: The “AQSOA™-FAM-Z02 – Water” working pair," Energy, Elsevier, vol. 106(C), pages 13-22.
    18. Gordeeva, Larisa & Frazzica, Andrea & Sapienza, Alessio & Aristov, Yuri & Freni, Angelo, 2014. "Adsorption cooling utilizing the “LiBr/silica – ethanol” working pair: Dynamic optimization of the adsorber/heat exchanger unit," Energy, Elsevier, vol. 75(C), pages 390-399.
    19. Aristov, Yuri I., 2017. "Adsorptive transformation and storage of renewable heat: Review of current trends in adsorption dynamics," Renewable Energy, Elsevier, vol. 110(C), pages 105-114.
    20. Marzia Khanam & Skander Jribi & Takahiko Miyazaki & Bidyut Baran Saha & Shigeru Koyama, 2018. "Numerical Investigation of Small-Scale Adsorption Cooling System Performance Employing Activated Carbon-Ethanol Pair," Energies, MDPI, vol. 11(6), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1000-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.