Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: Establishing direct interspecies electron transfer via ethanol-type fermentation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.10.058
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
- Nghiem, Long D. & Koch, Konrad & Bolzonella, David & Drewes, Jörg E., 2017. "Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 354-362.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Zhenru & Li, Yuan & Ao, Zhipeng & Li, Yang & Zhao, Zhiqiang & Zhang, Yaobin, 2024. "Boosting conversion of waste activated sludge to methane during anaerobic digestion via facilitating direct interspecies electron transfer with glycerol," Renewable Energy, Elsevier, vol. 233(C).
- Zhao, Zhiqiang & Li, Yang & Zhang, Yaobin, 2021. "Engineering enhanced anaerobic digestion: Benefits of ethanol fermentation pretreatment for boosting direct interspecies electron transfer," Energy, Elsevier, vol. 228(C).
- Yu, Qilin & Mao, Haohao & Zhao, Zhiqiang & Zhang, Yaobin, 2023. "Electro-polarization of the sludge with dynamic magnetic field enhanced the interspecies electron transfer in ZVI-added anaerobic digesters," Renewable Energy, Elsevier, vol. 215(C).
- Lei Zhu & Jiahou Hao & Houwei Lai & Guibai Li, 2022. "Effects of pH Adjustment on the Release of Carbon Source of Particulate Organic Matter (POM) in Domestic Sewage," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
- Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Solé-Bundó, Maria & Passos, Fabiana & Romero-Güiza, Maycoll S. & Ferrer, Ivet & Astals, Sergi, 2019. "Co-digestion strategies to enhance microalgae anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 471-482.
- Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Tyagi, Vinay Kumar & Fdez-Güelfo, L.A. & Zhou, Yan & Álvarez-Gallego, C.J. & Garcia, L.I. Romero & Ng, Wun Jern, 2018. "Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 380-399.
- Martínez-Ruano, Jimmy Anderson & Restrepo-Serna, Daissy Lorena & Carmona-Garcia, Estefanny & Giraldo, Jhonny Alejandro Poveda & Aroca, Germán & Cardona, Carlos Ariel, 2019. "Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment," Applied Energy, Elsevier, vol. 241(C), pages 504-518.
- Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
- Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
- Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
- Philipp Kehrein & Mark van Loosdrecht & Patricia Osseweijer & John Posada & Jo Dewulf, 2020. "The SPPD-WRF Framework: A Novel and Holistic Methodology for Strategical Planning and Process Design of Water Resource Factories," Sustainability, MDPI, vol. 12(10), pages 1-31, May.
- Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
- Ormaechea, P. & Castrillón, L. & Suárez-Peña, B. & Megido, L. & Fernández-Nava, Y. & Negral, L. & Marañón, E. & Rodríguez-Iglesias, J., 2018. "Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM," Renewable Energy, Elsevier, vol. 126(C), pages 897-904.
- Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
- Alves, Ingrid R.F.S. & Mahler, Claudio F. & Oliveira, Luciano B. & Reis, Marcelo M. & Bassin, João P., 2022. "Investigating the effect of crude glycerol from biodiesel industry on the anaerobic co-digestion of sewage sludge and food waste in ternary mixtures," Energy, Elsevier, vol. 241(C).
- Latifi, Pooria & Karrabi, Mohsen & Danesh, Shahnaz, 2019. "Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 288-296.
- Mattioli, A. & Gatti, G.B. & Mattuzzi, G.P. & Cecchi, F. & Bolzonella, D., 2017. "Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study," Renewable Energy, Elsevier, vol. 113(C), pages 980-988.
- Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Lamis Yousra Shahrazed Khelifa Zouaghi & Hayet Djelal & Zineb Salem, 2021. "Anaerobic co-digestion of three organic wastes under mesophilic conditions: lab-scale and pilot-scale studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9014-9028, June.
More about this item
Keywords
Anaerobic co-digestion (AcoD); Waste activated sludge (WAS); Direct interspecies electron transfer (DIET); Ethanol-type fermentation; Methanospirillum;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:523-533. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.