IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v233y2024ics0960148124012448.html
   My bibliography  Save this article

Boosting conversion of waste activated sludge to methane during anaerobic digestion via facilitating direct interspecies electron transfer with glycerol

Author

Listed:
  • Wang, Zhenru
  • Li, Yuan
  • Ao, Zhipeng
  • Li, Yang
  • Zhao, Zhiqiang
  • Zhang, Yaobin

Abstract

Possibility of boosting conversion of waste activated sludge to methane via facilitating direct interspecies electron transfer with glycerol was explored. Methane yields with 5 %/8 % glycerol were 1.18/1.31 folds higher than that without glycerol. After removing methane yields from glycerol, methane yields with 5 %/8 % glycerol was still 17 %/19 % higher than that without glycerol. Electron transfer coefficients for charge/discharge in sludge with 8 % glycerol were 1.12/1.39 folds higher than that without glycerol. Analysis of conductivity-temperature responses found that conductivity of sludge with 8 % glycerol exhibited an exponential increase when temperature was declined, similar to that with 8 % ethanol. However, conductivity of sludge with 8 % glycerol was one order of magnitude higher than that with 8 % ethanol. Electrochemical Fourier transform infrared spectra showed that reversible changes of bands associated with c-type cytochrome in sludge with 8 % glycerol were more intense than that with 8 % ethanol. Analysis of microbial communities showed that glycerol feeding increased the abundance of Methanospirillum hungatei JF-1, and specially enriched Tangfeifania diversioriginum, Syntrophomonas zehnderi OL-4 and Trichococcus pasteurii. These results indicated that glycerol feeding facilitated the better direct interspecies electron transfer than ethanol feeding that had been previously documented during anaerobic digestion of waste activated sludge.

Suggested Citation

  • Wang, Zhenru & Li, Yuan & Ao, Zhipeng & Li, Yang & Zhao, Zhiqiang & Zhang, Yaobin, 2024. "Boosting conversion of waste activated sludge to methane during anaerobic digestion via facilitating direct interspecies electron transfer with glycerol," Renewable Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012448
    DOI: 10.1016/j.renene.2024.121176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    2. Zhao, Zhiqiang & Sun, Cheng & Li, Yang & Peng, Hong & Zhang, Yaobin, 2020. "Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: Establishing direct interspecies electron transfer via ethanol-type fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 523-533.
    3. Qilin Yu & Yaobin Zhang, 2019. "Fouling-resistant biofilter of an anaerobic electrochemical membrane reactor," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Qilin & Mao, Haohao & Zhao, Zhiqiang & Zhang, Yaobin, 2023. "Electro-polarization of the sludge with dynamic magnetic field enhanced the interspecies electron transfer in ZVI-added anaerobic digesters," Renewable Energy, Elsevier, vol. 215(C).
    2. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    3. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    4. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek, 2024. "Optimisation of Biogas Production in the Co-Digestion of Pre-Hydrodynamically Cavitated Aerobic Granular Sludge with Waste Fats," Energies, MDPI, vol. 17(4), pages 1-16, February.
    5. Chao Liu & Yue Yin & Chuang Chen & Xuemeng Zhang & Jing Zhou & Qingran Zhang & Yinguang Chen, 2023. "Advances in Electricity-Steering Organic Waste Bio-Valorization for Medium Chain Carboxylic Acids Production," Energies, MDPI, vol. 16(6), pages 1-22, March.
    6. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    7. German Smetana & Ewa Neczaj & Anna Grosser, 2021. "Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    8. Nicola Di Costanzo & Alessandra Cesaro & Francesco Di Capua & Giovanni Esposito, 2021. "Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review," Energies, MDPI, vol. 14(23), pages 1-25, December.
    9. Jing, Huiyan & Cui, Yue & Ye, Meiying & Yan, Xusheng & Liu, Yanping, 2022. "Effect of zero-valent iron on acidification and methane production using food waste under different food-to-microorganism ratios," Renewable Energy, Elsevier, vol. 198(C), pages 131-143.
    10. Mariusz Tańczuk & Wojciech Kostowski, 2021. "Technical, Energetic and Economic Optimization Analysis of Selection of Heat Source for Municipal Sewage Sludge Dryer," Energies, MDPI, vol. 14(2), pages 1-16, January.
    11. Santo Fabio Corsino & Michele Torregrossa & Gaspare Viviani, 2021. "Biomethane Production from Anaerobic Co-Digestion of Selected Organic Fraction of Municipal Solid Waste (OFMSW) with Sewage Sludge: Effect of the Inoculum to Substrate Ratio (ISR) and Mixture Composit," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    12. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    13. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    14. Eljamal, Osama & Eljamal, Ramadan & Falyouna, Omar & Maamoun, Ibrahim & Thompson, Ian P., 2024. "Exceptional contribution of iron nanoparticle and aloe vera biomass additives to biogas production from anaerobic digestion of waste sludge," Energy, Elsevier, vol. 302(C).
    15. Bartłomiej Macherzyński & Elżbieta Popowska-Nowak & Maria Włodarczyk-Makuła & Beata Bień & Małgorzata Wszelaka-Rylik, 2024. "Intensification of Energy Production in the Anaerobic Digestion Process of Sewage Sludge Using Enzymatic Disintegration," Energies, MDPI, vol. 18(1), pages 1-14, December.
    16. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    17. Joanna Kazimierowicz & Izabela Bartkowska & Maria Walery, 2020. "Effect of Low-Temperature Conditioning of Excess Dairy Sewage Sludge with the Use of Solidified Carbon Dioxide on the Efficiency of Methane Fermentation," Energies, MDPI, vol. 14(1), pages 1-13, December.
    18. Yan-Ming Chen & Chin-Tsan Wang & Yung-Chin Yang, 2018. "Effect of Wall Boundary Layer Thickness on Power Performance of a Recirculation Microbial Fuel Cell," Energies, MDPI, vol. 11(4), pages 1-11, April.
    19. Li, Wangliang & Gupta, Rohit & Zhang, Zhikai & Cao, Lixia & Li, Yanqing & Show, Pau Loke & Gupta, Vijai Kumar & Kumar, Sunil & Lin, Kun-Yi Andrew & Varjani, Sunita & Connelly, Stephanie & You, Siming, 2023. "A review of high-solid anaerobic digestion (HSAD): From transport phenomena to process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    20. Raffaele Morello & Francesco Di Capua & Ludovico Pontoni & Stefano Papirio & Danilo Spasiano & Umberto Fratino & Francesco Pirozzi & Giovanni Esposito, 2021. "Microaerobic Digestion of Low-Biodegradable Sewage Sludge: Effect of Air Dosing in Batch Reactors," Sustainability, MDPI, vol. 13(17), pages 1-11, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.