IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip3p2810-2821.html
   My bibliography  Save this article

Techno-economic optimization of a geothermal ORC with novel “Emeritus” heat rejection units in hot climates

Author

Listed:
  • Astolfi, M.
  • La Diega, L. Noto
  • Romano, M.C.
  • Merlo, U.
  • Filippini, S.
  • Macchi, E.

Abstract

The present work aims to investigate the potential advantages in using a novel wet and dry configuration for heat rejection units in ORC power plants. The reference case is a geothermal power plant that exploits a low temperature brine and uses a closed loop of cooling water to release the condensation heat to the ambient. In the calculations, the off-design operation of the whole plant is optimized from a techno-economic point of view with a realistic part-load behavior of the ORC and the use of experimentally validated correlations for the heat rejection section. The performance attainable with the novel LU-VE Emeritus® unit equipped with a water spray system and adiabatic panels is compared with those achievable with the same unit in dry operation. Final results show a marked increase of electricity production as well as of revenues with Emeritus® units with respect to a dry unit.

Suggested Citation

  • Astolfi, M. & La Diega, L. Noto & Romano, M.C. & Merlo, U. & Filippini, S. & Macchi, E., 2020. "Techno-economic optimization of a geothermal ORC with novel “Emeritus” heat rejection units in hot climates," Renewable Energy, Elsevier, vol. 147(P3), pages 2810-2821.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p3:p:2810-2821
    DOI: 10.1016/j.renene.2019.01.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martelli, Emanuele & Capra, Federico & Consonni, Stefano, 2015. "Numerical optimization of Combined Heat and Power Organic Rankine Cycles – Part A: Design optimization," Energy, Elsevier, vol. 90(P1), pages 310-328.
    2. Zhai, Huixing & Shi, Lin & An, Qingsong, 2014. "Influence of working fluid properties on system performance and screen evaluation indicators for geothermal ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 74(C), pages 2-11.
    3. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    4. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: Thermodynamic optimization," Energy, Elsevier, vol. 66(C), pages 423-434.
    5. Capra, Federico & Martelli, Emanuele, 2015. "Numerical optimization of combined heat and power Organic Rankine Cycles – Part B: Simultaneous design & part-load optimization," Energy, Elsevier, vol. 90(P1), pages 329-343.
    6. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (Organic Rankine Cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part B: Techno-economic optimization," Energy, Elsevier, vol. 66(C), pages 435-446.
    7. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.
    8. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Yang, Youngmin, 2016. "Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications," Energy, Elsevier, vol. 102(C), pages 473-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irl, Matthäus & Schifflechner, Christopher & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Advanced monitoring of geothermal Organic Rankine Cycles," Renewable Energy, Elsevier, vol. 217(C).
    2. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan, 2020. "Thermo-economic analyses and evaluations of small-scale dual-pressure evaporation organic Rankine cycle system using pure fluids," Energy, Elsevier, vol. 206(C).
    3. Pallis, Platon & Varvagiannis, Efstratios & Braimakis, Konstantinos & Roumpedakis, Tryfonas & Leontaritis, Aris - Dimitrios & Karellas, Sotirios, 2021. "Development, experimental testing and techno-economic assessment of a fully automated marine organic rankine cycle prototype for jacket cooling water heat recovery," Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    2. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    3. Ayub, Mohammad & Mitsos, Alexander & Ghasemi, Hadi, 2015. "Thermo-economic analysis of a hybrid solar-binary geothermal power plant," Energy, Elsevier, vol. 87(C), pages 326-335.
    4. Jesper Graa Andreasen & Martin Ryhl Kærn & Fredrik Haglind, 2019. "Assessment of Methods for Performance Comparison of Pure and Zeotropic Working Fluids for Organic Rankine Cycle Power Systems," Energies, MDPI, vol. 12(9), pages 1-25, May.
    5. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D’haeseleer, William, 2019. "Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles," Applied Energy, Elsevier, vol. 242(C), pages 716-731.
    6. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    7. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    8. Sun, Qingxuan & Wang, Yaxiong & Cheng, Ziyang & Wang, Jiangfeng & Zhao, Pan & Dai, Yiping, 2020. "Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source," Renewable Energy, Elsevier, vol. 147(P3), pages 2822-2832.
    9. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    10. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    11. Mokhtari, Hamid & Hadiannasab, Hasti & Mostafavi, Mostafa & Ahmadibeni, Ali & Shahriari, Behrooz, 2016. "Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger," Energy, Elsevier, vol. 102(C), pages 260-275.
    12. Lee, Ung & Mitsos, Alexander, 2017. "Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification," Energy, Elsevier, vol. 127(C), pages 489-501.
    13. Yang, Lixiang & Gong, Maoqiong & Guo, Hao & Dong, Xueqiang & Shen, Jun & Wu, Jianfeng, 2016. "Effects of critical and boiling temperatures on system performance and fluid selection indicator for low temperature organic Rankine cycles," Energy, Elsevier, vol. 109(C), pages 830-844.
    14. Yodha Y. Nusiaputra & Hans-Joachim Wiemer & Dietmar Kuhn, 2014. "Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields," Energies, MDPI, vol. 7(7), pages 1-20, July.
    15. Usman, Muhammad & Imran, Muhammad & Yang, Youngmin & Lee, Dong Hyun & Park, Byung-Sik, 2017. "Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions," Energy, Elsevier, vol. 123(C), pages 353-366.
    16. Zhang, Jianan & Qin, Kan & Li, Daijin & Luo, Kai & Dang, Jianjun, 2020. "Potential of Organic Rankine Cycles for Unmanned Underwater Vehicles," Energy, Elsevier, vol. 192(C).
    17. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    18. Tomislav Malvić & Uroš Barudžija & Borivoje Pašić & Josip Ivšinović, 2021. "Small Unconventional Hydrocarbon Gas Reservoirs as Challenging Energy Sources, Case Study from Northern Croatia," Energies, MDPI, vol. 14(12), pages 1-16, June.
    19. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    20. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p3:p:2810-2821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.