IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p833-844.html
   My bibliography  Save this article

Drying characteristics and kinetics solar drying of Mediterranean mussel (mytilus galloprovincilis) type under forced convection

Author

Listed:
  • Kouhila, Mounir
  • Moussaoui, Haytem
  • Lamsyehe, Hamza
  • Tagnamas, Zakaria
  • Bahammou, Younes
  • Idlimam, Ali
  • Lamharrar, Abdelkader

Abstract

Drying is a process of hydration and Elimination of water which allows the proliferation of microorganisms and development of chemical reactions without influencing morphological structure of Food Material. This paper focused on the influence of temperature on drying kinetics of the Mediterranean mussels (mytilus galloprovincilis) as per the requirement for storage seafood. Convective drying kinetics and hygroscopic behavior of Mytilus Galloprovincilis was carried out in a solar dryer operating in forced convection. Experimental drying kinetics were measured at three air temperatures (50, 60, and 70 °C), and two air flow rates fixed at (300 and 150 m3 h−1) with ambient air temperature in the range of 36–42 ± 1 °C, 8.92 to 18.86 ± 2% for ambient humidity, 422 to 988 w/m2 for solar irradiation. Experimental data of drying are collected to plot the characteristic drying curve. Nine mathematical models available in the literature are used for describing the drying curves. The logarithmic model showed the best fitting of experimental data with a highest value of correlation coefficient (r), and lowest value of reduced chi-square (χ2). Effective diffusion coefficient value Deff was obtained between 1.14 10−9 to 3.61 10−9m2s−1 based on the Fick equation.

Suggested Citation

  • Kouhila, Mounir & Moussaoui, Haytem & Lamsyehe, Hamza & Tagnamas, Zakaria & Bahammou, Younes & Idlimam, Ali & Lamharrar, Abdelkader, 2020. "Drying characteristics and kinetics solar drying of Mediterranean mussel (mytilus galloprovincilis) type under forced convection," Renewable Energy, Elsevier, vol. 147(P1), pages 833-844.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:833-844
    DOI: 10.1016/j.renene.2019.09.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
    2. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    3. Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
    4. Mghazli, Safa & Ouhammou, Mourad & Hidar, Nadia & Lahnine, Lamyae & Idlimam, Ali & Mahrouz, Mostafa, 2017. "Drying characteristics and kinetics solar drying of Moroccan rosemary leaves," Renewable Energy, Elsevier, vol. 108(C), pages 303-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Zhou, Yufang & Wan, Keji & He, Qiongqiong, 2023. "The non-isothermal drying characteristics of lignite and prevention strategies for structure damage," Energy, Elsevier, vol. 284(C).
    2. Sivakumar, S. & Velmurugan, C. & Dhas, D.S. Ebenezer Jacob & Solomon, A. Brusly & Dev Wins, K. Leo, 2020. "Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer," Renewable Energy, Elsevier, vol. 155(C), pages 1165-1172.
    3. Moussaoui, Haytem & Bahammou, Younes & Tagnamas, Zakaria & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali, 2021. "Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer," Renewable Energy, Elsevier, vol. 168(C), pages 131-140.
    4. Mirzaei, Saeid & Ameri, Mehran & Ziaforoughi, Amin, 2021. "Energy-exergy analysis of an infrared dryer equipped with a photovoltaic-thermal collector in glazed and unglazed modes," Renewable Energy, Elsevier, vol. 169(C), pages 541-556.
    5. Ouaabou, Rachida & Nabil, Bouchra & Ouhammou, Mourad & Idlimam, Ali & Lamharrar, Abdelkader & Ennahli, Said & Hanine, Hafida & Mahrouz, Mostafa, 2020. "Impact of solar drying process on drying kinetics, and on bioactive profile of Moroccan sweet cherry," Renewable Energy, Elsevier, vol. 151(C), pages 908-918.
    6. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
    2. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    3. Mghazli, Safa & Ouhammou, Mourad & Hidar, Nadia & Lahnine, Lamyae & Idlimam, Ali & Mahrouz, Mostafa, 2017. "Drying characteristics and kinetics solar drying of Moroccan rosemary leaves," Renewable Energy, Elsevier, vol. 108(C), pages 303-310.
    4. Hao, Wengang & Lu, Yifeng & Lai, Yanhua & Yu, Hongwen & Lyu, Mingxin, 2018. "Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products," Renewable Energy, Elsevier, vol. 127(C), pages 685-696.
    5. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    7. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Bahammou, Younes & Lamsyehe, Hamza & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali & Abdenouri, Naji, 2019. "Valorization of co-products of sardine waste by physical treatment under natural and forced convection solar drying," Renewable Energy, Elsevier, vol. 142(C), pages 110-122.
    9. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    10. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
    11. Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
    12. Tagnamas, Zakaria & Bahammou, Younes & Kouhila, Mounir & Hilali, Soukaina & Idlimam, Ali & Lamharrar, Abdelkader, 2020. "Conservation of Moroccan truffle (Terfezia boudieri) using solar drying method," Renewable Energy, Elsevier, vol. 146(C), pages 16-24.
    13. Gómez-de la Cruz, Francisco J. & Casanova-Peláez, Pedro J. & Palomar-Carnicero, José M. & Cruz-Peragón, Fernando, 2014. "Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction," Energy, Elsevier, vol. 75(C), pages 146-152.
    14. Monica Patricia Camas-Nafate & Peggy Alvarez-Gutiérrez & Edgar Valenzuela-Mondaca & Roger Castillo-Palomera & Yolanda del Carmen Perez-Luna, 2019. "Improved Agricultural Products Drying Through a Novel Double Collector Solar Device," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    15. Francisco Álvarez-Sánchez & Jassón Flores-Prieto & Octavio García-Valladares, 2021. "Annual Thermal Performance of an Industrial Hybrid Direct–Indirect Solar Air Heating System for Drying Applications in Morelos-México," Energies, MDPI, vol. 14(17), pages 1-20, August.
    16. R.K. Jha & P.K. Prabhakar & P.P. Srivastav & V.V. Rao, 2015. "Influence of temperature on vacuum drying characteristics, functional properties and micro structure of Aloe vera (Aloe barbadensis Miller) gel," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 61(4), pages 141-149.
    17. Hamza, Lamsyehe & Mounir, Kouhila & Younes, Bahammou & Zakaria, Tagnamas & Haytem, Moussaoui & Hind, Mouhanni & Abdelkader, Lamharrar & Ali, Idlimam, 2020. "Physicochemical study of the conservation of Moroccan anchovies by convective solar drying," Renewable Energy, Elsevier, vol. 152(C), pages 44-54.
    18. H. Samimi. Akhijani & A. Arabhosseini & M.H. Kianmehr, 2016. "Effective moisture diffusivity during hot air solar drying of tomato slices," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(1), pages 15-23.
    19. Hu, Jianjun & Liu, Kaitong & Guo, Meng & Zhang, Guangqiu & Chu, Zhongliang & Wang, Meida, 2019. "Performance improvement of baffle-type solar air collector based on first chamber narrowing," Renewable Energy, Elsevier, vol. 135(C), pages 701-710.
    20. Hamdi, Ilhem & Kooli, Sami & Elkhadraoui, Aymen & Azaizia, Zaineb & Abdelhamid, Fadhel & Guizani, Amenallah, 2018. "Experimental study and numerical modeling for drying grapes under solar greenhouse," Renewable Energy, Elsevier, vol. 127(C), pages 936-946.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:833-844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.