IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1358-1370.html
   My bibliography  Save this article

Anaerobic co-digestion of energy crop and agricultural wastes to prepare uniform-format cellulosic feedstock for biorefining

Author

Listed:
  • Zhong, Yuan
  • Chen, Rui
  • Rojas-Sossa, Juan-Pablo
  • Isaguirre, Christine
  • Mashburn, Austin
  • Marsh, Terence
  • Liu, Yan
  • Liao, Wei

Abstract

This study investigated the effects of mixtures of agricultural wastes and energy crop on solid digestate quality and biogas production. The feedstock mixtures of dairy manure and switchgrass (DM:SG) had the similar lag phase with the control feedstock of dairy manure, while was shorter than the feedstock mixtures of dairy manure and corn stover (DM:CS). Under the stable digestion conditions, the mixture of DM:SG at the mixture ratio of 80:20 had the highest methane production of 138 mL/g total solids (TS) loading; the mixtures of DM:SG and DM:CS at the mixture ratio of 60:40 had the highest VS reduction of 25.8%; and the mixture of DM:SG at the mixture ratio of 60:40 had the highest cellulose and xylan reduction of 40.4 and 40.7%, respectively. Two bacterial phyla (Firmicultes and Bacteroidetes) and three archaeal genera (Methanosarcina, Methanobrevibacter, and Methanobacterium) were the abundant microbial communities in all tested digestions. The statistical analysis concludes that anaerobic digestion can homogenize the feedstocks to generate solid digestates with uniform-format carbohydrate composition and similar mono-sugar conversion. The mean cellulose and xylan contents of the solid digestates were 26.6% and 15.2%, respectively. The corresponding mean glucose and xylose conversions of the solid digestates were 82.3% and 98.7%.

Suggested Citation

  • Zhong, Yuan & Chen, Rui & Rojas-Sossa, Juan-Pablo & Isaguirre, Christine & Mashburn, Austin & Marsh, Terence & Liu, Yan & Liao, Wei, 2020. "Anaerobic co-digestion of energy crop and agricultural wastes to prepare uniform-format cellulosic feedstock for biorefining," Renewable Energy, Elsevier, vol. 147(P1), pages 1358-1370.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1358-1370
    DOI: 10.1016/j.renene.2019.09.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    2. Granada, Camille E. & Hasan, Camila & Marder, Munique & Konrad, Odorico & Vargas, Luciano K. & Passaglia, Luciane M.P. & Giongo, Adriana & de Oliveira, Rafael R. & Pereira, Leandro de M. & de Jesus Tr, 2018. "Biogas from slaughterhouse wastewater anaerobic digestion is driven by the archaeal family Methanobacteriaceae and bacterial families Porphyromonadaceae and Tissierellaceae," Renewable Energy, Elsevier, vol. 118(C), pages 840-846.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Guiling & Chen, Yanting & Ndegwa, Pius, 2021. "Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Mariana Murillo-Roos & Lorena Uribe-Lorío & Paola Fuentes-Schweizer & Daniela Vidaurre-Barahona & Laura Brenes-Guillén & Ivannia Jiménez & Tatiana Arguedas & Wei Liao & Lidieth Uribe, 2022. "Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica," Energies, MDPI, vol. 15(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebers Broughel, Anna, 2019. "Impact of state policies on generating capacity for production of electricity and combined heat and power from forest biomass in the United States," Renewable Energy, Elsevier, vol. 134(C), pages 1163-1172.
    2. Olatunde, Gbenga A. & Fasina, Oladiran O., 2019. "Influence of drag equations on computational fluid dynamic modeling of fluidization behavior of loblolly pine wood grinds," Renewable Energy, Elsevier, vol. 139(C), pages 651-660.
    3. Sanchez, Daniel L. & Callaway, Duncan S., 2016. "Optimal scale of carbon-negative energy facilities," Applied Energy, Elsevier, vol. 170(C), pages 437-444.
    4. Aui, Alvina & Wang, Yu, 2022. "Post-RFS supports for cellulosic ethanol: Evaluation of economic and environmental impacts of alternative policies," Energy Policy, Elsevier, vol. 170(C).
    5. Dino Sulejmanovic & James R. Keiser & Yi-Feng Su & Michael D. Kass & Jack R. Ferrell & Mariefel V. Olarte & John E. Wade & Jiheon Jun, 2022. "Effect of Carboxylic Acids on Corrosion of Type 410 Stainless Steel in Pyrolysis Bio-Oil," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    6. Milbrandt, Anelia R. & Heimiller, Donna M. & Perry, Andrew D. & Field, Christopher B., 2014. "Renewable energy potential on marginal lands in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 473-481.
    7. Stanturf, John A. & Young, Timothy M. & Perdue, James H. & Dougherty, Derek & Pigott, Michael & Guo, Zhimei & Huang, Xia, 2018. "Productivity and profitability potential for non-native Eucalyptus plantings in the southern USA," Forest Policy and Economics, Elsevier, vol. 97(C), pages 210-222.
    8. Li, Chao & Hayes, Dermot J. & Jacobs, Keri L., 2018. "Biomass for bioenergy: Optimal collection mechanisms and pricing when feedstock supply does not equal availability," Energy Economics, Elsevier, vol. 76(C), pages 403-410.
    9. Valenti, Francesca & Porto, Simona M.C. & Dale, Bruce E. & Liao, Wei, 2018. "Spatial analysis of feedstock supply and logistics to establish regional biogas power generation: A case study in the region of Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 50-63.
    10. Perdue, James H. & Stanturf, John A. & Young, Timothy M. & Huang, Xia & Dougherty, Derek & Pigott, Michael & Guo, Zhimei, 2017. "Profitability potential for Pinus taeda L. (loblolly pine) short-rotation bioenergy plantings in the southern USA," Forest Policy and Economics, Elsevier, vol. 83(C), pages 146-155.
    11. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Sharma, Bijay P. & Yu, Tun-Hsiang Edward & English, Burton C. & Boyer, Christopher M., 2018. "Analyzing the Economics of Renewable Jet Fuels Using a Game-theoretic Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 273787, Agricultural and Applied Economics Association.
    13. Akram, Fatima & Haq, Ikram ul & Imran, Wafa & Mukhtar, Hamid, 2018. "Insight perspectives of thermostable endoglucanases for bioethanol production: A review," Renewable Energy, Elsevier, vol. 122(C), pages 225-238.
    14. Huynh Truong Gia Nguyen & Erik Lyttek & Pankaj Lal & Taylor Wieczerak & Pralhad Burli, 2020. "Assessment of Switchgrass-Based Bioenergy Supply Using GIS-Based Fuzzy Logic and Network Optimization in Missouri (U.S.A.)," Energies, MDPI, vol. 13(17), pages 1-18, September.
    15. Landry, Joel R. & Bento, Antonio M., 2020. "On the trade-offs of regulating multiple unpriced externalities with a single instrument: Evidence from biofuel policies," Energy Economics, Elsevier, vol. 85(C).
    16. Li, Qi & Hu, Guiping, 2014. "Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification," Energy, Elsevier, vol. 74(C), pages 576-584.
    17. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    18. Zhang, Qi & Shi, Zhenzhen & Zhang, Pengfei & Li, Zhichao & Jaberi-Douraki, Majid, 2017. "Predictive temperature modeling and experimental investigation of ultrasonic vibration-assisted pelleting of wheat straw," Applied Energy, Elsevier, vol. 205(C), pages 511-528.
    19. He-Lambert, Lixia & English, Burton C. & Lambert, Dayton M. & Shylo, Oleg & Larson, James A. & Yu, T. Edward & Wilson, Bradly, 2018. "Determining a geographic high resolution supply chain network for a large scale biofuel industry," Applied Energy, Elsevier, vol. 218(C), pages 266-281.
    20. Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1358-1370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.