IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp2736-2743.html
   My bibliography  Save this article

A Markovian approach to power generation capacity assessment of floating wave energy converters

Author

Listed:
  • Arzaghi, Ehsan
  • Abaei, Mohammad Mahdi
  • Abbassi, Rouzbeh
  • O'Reilly, Malgorzata
  • Garaniya, Vikram
  • Penesis, Irene

Abstract

The significant cost required for implementation of WEC sites and the uncertainty associated with their performance, due to the randomness of the marine environment, can bring critical challenges to the industry. This paper presents a probabilistic methodology for predicting the long-term power generation of WECs. The developed method can be used by the operators and designers to optimize the performance of WECs by improving the design or in selecting optimum site locations. A Markov Chain model is constructed to estimate the stationary distribution of output power based on the results of hydrodynamic analyses on a point absorber WEC. To illustrate the application of the method, the performance of a point absorber is assessed in three locations in the south of Tasmania by considering their actual long-term sea state data. It is observed that location 3 provides the highest potential for energy extraction with a mean value for absorbed power of approximately 0.54MW, while the value for locations 1 and 2 is 0.33MW and 0.43MW respectively. The model estimated that location 3 has the capacity to satisfy industry requirement with probability 0.72, assuming that the production goal is to generate at least 0.5MW power.

Suggested Citation

  • Arzaghi, Ehsan & Abaei, Mohammad Mahdi & Abbassi, Rouzbeh & O'Reilly, Malgorzata & Garaniya, Vikram & Penesis, Irene, 2020. "A Markovian approach to power generation capacity assessment of floating wave energy converters," Renewable Energy, Elsevier, vol. 146(C), pages 2736-2743.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2736-2743
    DOI: 10.1016/j.renene.2019.08.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119312868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Andrés, A.D. & Guanche, R. & Weber, J. & Costello, R., 2015. "Finding gaps on power production assessment on WECs: Wave definition analysis," Renewable Energy, Elsevier, vol. 83(C), pages 171-187.
    2. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    3. Lisnianski, Anatoly & Elmakias, David & Laredo, David & Ben Haim, Hanoch, 2012. "A multi-state Markov model for a short-term reliability analysis of a power generating unit," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 1-6.
    4. Vincenzo Franzitta & Pietro Catrini & Domenico Curto, 2017. "Wave Energy Assessment along Sicilian Coastline, Based on DEIM Point Absorber," Energies, MDPI, vol. 10(3), pages 1-15, March.
    5. Abaei, Mohammad Mahdi & Arzaghi, Ehsan & Abbassi, Rouzbeh & Garaniya, Vikram & Penesis, Irene, 2017. "Developing a novel risk-based methodology for multi-criteria decision making in marine renewable energy applications," Renewable Energy, Elsevier, vol. 102(PB), pages 341-348.
    6. Kara, Fuat, 2016. "Time domain prediction of power absorption from ocean waves with wave energy converter arrays," Renewable Energy, Elsevier, vol. 92(C), pages 30-46.
    7. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Performance prediction of a prototype tidal power turbine by using a suitable numerical model," Renewable Energy, Elsevier, vol. 113(C), pages 293-302.
    8. Ossai, Chinedu I. & Boswell, Brian & Davies, Ian J., 2016. "A Markovian approach for modelling the effects of maintenance on downtime and failure risk of wind turbine components," Renewable Energy, Elsevier, vol. 96(PA), pages 775-783.
    9. Jadidoleslam, Navid & Özger, Mehmet & Ağıralioğlu, Necati, 2016. "Wave power potential assessment of Aegean Sea with an integrated 15-year data," Renewable Energy, Elsevier, vol. 86(C), pages 1045-1059.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad, 2021. "A multinomial process tree for reliability assessment of machinery in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Bao, Minghan & Arzaghi, Ehsan & Abaei, Mohammad Mahdi & Abbassi, Rouzbeh & Garaniya, Vikram & Abdussamie, Nagi & Heasman, Kevin, 2024. "Site selection for offshore renewable energy platforms: A multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 229(C).
    3. Dillon, Trent & Maurer, Benjamin & Lawson, Michael & Polagye, Brian, 2024. "Forecast-based stochastic optimization for a load powered by wave energy," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    2. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    3. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    4. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    5. Vincenzo Franzitta & Pietro Catrini & Domenico Curto, 2017. "Wave Energy Assessment along Sicilian Coastline, Based on DEIM Point Absorber," Energies, MDPI, vol. 10(3), pages 1-15, March.
    6. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    7. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.
    8. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    9. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    10. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    11. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    12. FANG Yongfeng & TAO Wenliang & TEE Kong Fah, 2016. "Reliability Analysis of Multi-State Engine Units Utilizing Time-Domain Response Data," Journal of Systems Science and Information, De Gruyter, vol. 4(4), pages 354-364, August.
    13. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    14. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Huang, Xianbei & Yang, Wei & Li, Yaojun & Qiu, Baoyun & Guo, Qiang & Zhuqing, Liu, 2019. "Review on the sensitization of turbulence models to rotation/curvature and the application to rotating machinery," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 46-69.
    16. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    17. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2018. "Assessment of the Potential of Energy Extracted from Waves and Wind to Supply Offshore Oil Platforms Operating in the Gulf of Mexico," Energies, MDPI, vol. 11(5), pages 1-25, April.
    18. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    19. Addy Wahyudie & Tri Bagus Susilo & Fatima Alaryani & Cuk Supriyadi Ali Nandar & Mohammed Abdi Jama & Abdulrahman Daher & Hussain Shareef, 2020. "Wave Power Assessment in the Middle Part of the Southern Coast of Java Island," Energies, MDPI, vol. 13(10), pages 1-19, May.
    20. Martić, Ivana & Degiuli, Nastia & Grlj, Carlo Giorgio, 2024. "Scaling of wave energy converters for optimum performance in the Adriatic Sea," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2736-2743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.