IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v38y2012i1p40-49.html
   My bibliography  Save this article

Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai

Author

Listed:
  • Al-Sallal, Khaled A.
  • Al-Rais, Laila

Abstract

The main aim of the study is to investigate passive cooling performance in modern urban contexts in the hot humid climate of the city of Dubai. Three cases were simulated for Al-Mankhool area with laminar and turbulent windflow depending on Computational Fluid Dynamics (CFD) methodology. The laminar case was firstly run to study the general wind behaviour around buildings and at the pedestrian level. The other two cases were turbulence modelling in both winter and summer seasons. The results were merely discussed and analysed in terms of passive cooling via natural ventilation and its impact on human comfort depending on the ASHRAE adaptive model. In the modern urban pattern, wind flow decreased when hitting the buildings, funnelled by the wider street canyons, then increased once again when going to the free stream. Wind velocities were more comfortable in wider street canyons with aspect ratio, AR = 1.75. It was noticed that wind speed increased substantially in open spaces such as parking areas and undeveloped plots reaching its maximum values of 4.55 m/s in the summer and 5.06 m/s in the winter. Where as in the longer street canyons bounded by building blocks on opposite sides, the wind velocity remained stable at low values (0.51 m/s in the winter versus 1.52 m/s in the summer) with limited fluctuation till it joined the free stream again.

Suggested Citation

  • Al-Sallal, Khaled A. & Al-Rais, Laila, 2012. "Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai," Renewable Energy, Elsevier, vol. 38(1), pages 40-49.
  • Handle: RePEc:eee:renene:v:38:y:2012:i:1:p:40-49
    DOI: 10.1016/j.renene.2011.06.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811100396X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.06.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bourbia, F & Awbi, H.B, 2004. "Building cluster and shading in urban canyon for hot dry climate," Renewable Energy, Elsevier, vol. 29(2), pages 249-262.
    2. Al-Sallal, Khaled A. & Al-Rais, Laila, 2011. "Outdoor airflow analysis and potential for passive cooling in the traditional urban context of Dubai," Renewable Energy, Elsevier, vol. 36(9), pages 2494-2501.
    3. Bourbia, F. & Boucheriba, F., 2010. "Impact of street design on urban microclimate for semi arid climate (Constantine)," Renewable Energy, Elsevier, vol. 35(2), pages 343-347.
    4. Bourbia, F & Awbi, H.B, 2004. "Building cluster and shading in urban canyon for hot dry climate," Renewable Energy, Elsevier, vol. 29(2), pages 291-301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Se Woong & Brown, Robert D., 2021. "Urban heat island (UHI) variations within a city boundary: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Bouketta, S. & Bouchahm, Y., 2020. "Numerical evaluation of urban geometry's control of wind movements in outdoor spaces during winter period. Case of Mediterranean climate," Renewable Energy, Elsevier, vol. 146(C), pages 1062-1069.
    3. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    4. Kim, Se Woong & Brown, Robert D., 2023. "Development of a micro-scale heat island (MHI) model to assess the thermal environment in urban street canyons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    6. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeri Choi & Sugie Lee & Hyunbin Moon, 2018. "Urban Physical Environments and the Duration of High Air Temperature: Focusing on Solar Radiation Trapping Effects," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    2. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    3. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    4. Choi, Yeri & Lee, Sugie, 2020. "The impact of urban physical environments on cooling rates in summer: Focusing on interaction effects with a kernel-based regularized least squares (KRLS) model," Renewable Energy, Elsevier, vol. 149(C), pages 523-534.
    5. Sheikh Ahmad Zaki & Siti Wan Syahidah & Mohd Fairuz Shahidan & Mardiana Idayu Ahmad & Fitri Yakub & Mohamad Zaki Hassan & Mohd Yusof Md Daud, 2020. "Assessment of Outdoor Air Temperature with Different Shaded Area within an Urban University Campus in Hot-Humid Climate," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    6. Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
    7. Suk-jin Jung & Seong-hwan Yoon, 2018. "Study on the Prediction and Improvement of Indoor Natural Light and Outdoor Comfort in Apartment Complexes Using Daylight Factor and Physiologically Equivalent Temperature Indices," Energies, MDPI, vol. 11(7), pages 1-19, July.
    8. Weixun Lv & Yan Wu & Jianbin Zang, 2021. "A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures," Energies, MDPI, vol. 14(19), pages 1-21, September.
    9. Krüger, E. & Pearlmutter, D. & Rasia, F., 2010. "Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment," Applied Energy, Elsevier, vol. 87(6), pages 2068-2078, June.
    10. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.
    11. Bourbia, F. & Boucheriba, F., 2010. "Impact of street design on urban microclimate for semi arid climate (Constantine)," Renewable Energy, Elsevier, vol. 35(2), pages 343-347.
    12. Andreou, E., 2013. "Thermal comfort in outdoor spaces and urban canyon microclimate," Renewable Energy, Elsevier, vol. 55(C), pages 182-188.
    13. Xinyue Wang & Zhengrui Li & Shuangxin Ding & Xiufeng Sun & Hua Qin & Jianwan Ji & Rui Zhang, 2023. "Study on the Relationship between Urban Street-Greenery Rate and Land Surface Temperature Considering Local Climate Zone," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    14. Mohamed Elhadi Matallah & Djamel Alkama & Jacques Teller & Atef Ahriz & Shady Attia, 2021. "Quantification of the Outdoor Thermal Comfort within Different Oases Urban Fabrics," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    15. Andreou, E. & Axarli, K., 2012. "Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis," Renewable Energy, Elsevier, vol. 43(C), pages 354-363.
    16. Rosso, Federica & Golasi, Iacopo & Castaldo, Veronica Lucia & Piselli, Cristina & Pisello, Anna Laura & Salata, Ferdinando & Ferrero, Marco & Cotana, Franco & de Lieto Vollaro, Andrea, 2018. "On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons," Renewable Energy, Elsevier, vol. 118(C), pages 825-839.
    17. Shahrestani, Mehdi & Yao, Runming & Luo, Zhiwen & Turkbeyler, Erdal & Davies, Hywel, 2015. "A field study of urban microclimates in London," Renewable Energy, Elsevier, vol. 73(C), pages 3-9.
    18. Randa Osama Shata & Ayman Hassaan Mahmoud & Mohammad Fahmy, 2021. "Correlating the Sky View Factor with the Pedestrian Thermal Environment in a Hot Arid University Campus Plaza," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    19. Zhiming GUO & Tsuyoshi SETOGUCHI & Norihiro WATANABE & Ke HUO, 2018. "Public Open Space Design Study on the Basis of Microclimate and Spatial Behavior in Hot and Cold Weather Conditions in Downtown Area," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 128-128, February.
    20. Kim, Se Woong & Brown, Robert D., 2021. "Urban heat island (UHI) variations within a city boundary: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:38:y:2012:i:1:p:40-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.