IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp345-363.html
   My bibliography  Save this article

Passive strategies used in Southern Portugal vernacular rammed earth buildings and their influence in thermal performance

Author

Listed:
  • Fernandes, Jorge
  • Mateus, Ricardo
  • Gervásio, Helena
  • Silva, Sandra M.
  • Bragança, Luís

Abstract

In Portugal, there is a lack of quantitative studies on the thermal performance of earthen buildings. This paper aims at contributing to this research context by studying site-specific strategies, and the thermal performance and comfort conditions of a rammed earth building located in southern Portugal. The study is based on objective and subjective assessments and consists of assessing the hygrothermal conditions, thermal comfort levels and analysing the occupants' perception regarding thermal sensation. The results showed that the strategies used are closely related to local conditions, mitigating the effects of high summer temperatures and ensuring a good summer thermal performance by passive means alone. During the summer monitoring, results showed that the building stayed most of the time (80%) in Category I (high level of expectation) and the remaining time in Category II, according to the classification method defined by the standard EN15251. During the winter period, the building had the worst performance, being necessary a heating system to guarantee comfort conditions. Additionally, the results showed that the good thermal performance of the case study depended more on the high thermal inertia than on the U-value of the envelope. Limitations and advantages of the use of earthen construction elements are discussed.

Suggested Citation

  • Fernandes, Jorge & Mateus, Ricardo & Gervásio, Helena & Silva, Sandra M. & Bragança, Luís, 2019. "Passive strategies used in Southern Portugal vernacular rammed earth buildings and their influence in thermal performance," Renewable Energy, Elsevier, vol. 142(C), pages 345-363.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:345-363
    DOI: 10.1016/j.renene.2019.04.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119305828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    2. Chandel, S.S. & Sharma, Vandna & Marwah, Bhanu M., 2016. "Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 459-477.
    3. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Fernandes & Raphaele Malheiro & Maria de Fátima Castro & Helena Gervásio & Sandra Monteiro Silva & Ricardo Mateus, 2020. "Thermal Performance and Comfort Condition Analysis in a Vernacular Building with a Glazed Balcony," Energies, MDPI, vol. 13(3), pages 1-29, February.
    2. Widera, Barbara, 2021. "Comparative analysis of user comfort and thermal performance of six types of vernacular dwellings as the first step towards climate resilient, sustainable and bioclimatic architecture in western sub-S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Joana Gonçalves & Ricardo Mateus & José Dinis Silvestre & Ana Pereira Roders, 2020. "Going beyond Good Intentions for the Sustainable Conservation of Built Heritage: A Systematic Literature Review," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    4. Zhao, Xi & Nie, Ping & Zhu, Jiayin & Tong, Liping & Liu, Yingfang, 2020. "Evaluation of thermal environments for cliff-side cave dwellings in cold region of China," Renewable Energy, Elsevier, vol. 158(C), pages 154-166.
    5. Livia Cosentino & Jorge Fernandes & Ricardo Mateus, 2023. "A Review of Natural Bio-Based Insulation Materials," Energies, MDPI, vol. 16(12), pages 1-21, June.
    6. Genovese, P.V. & Zoure, A.N., 2023. "Architecture trends and challenges in sub-Saharan Africa's construction industry: A theoretical guideline of a bioclimatic architecture evolution based on the multi-scale approach and circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Alexey Maslakov & Ksenia Sotnikova & Gleb Gribovskii & Dmitry Evlanov, 2022. "Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic," Energies, MDPI, vol. 15(3), pages 1-16, January.
    8. Mu, Jun & Yu, Shenwei & Hao, Shimeng, 2023. "Quantitative evaluation of thermal conductivity of earth materials with different particle size distributions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.
    10. Teresa Gil-Piqueras & Pablo Rodríguez-Navarro, 2021. "Tradition and Sustainability in Vernacular Architecture of Southeast Morocco," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    11. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    12. Qinglong Gao & Tao Wu & Lei Liu & Yong Yao & Bin Jiang, 2022. "Prediction of Wall and Indoor Hygrothermal Properties of Rammed Earth Folk House in Northwest Sichuan," Energies, MDPI, vol. 15(5), pages 1-16, March.
    13. Elisabete R. Teixeira & Gilberto Machado & Adilson de P. Junior & Christiane Guarnier & Jorge Fernandes & Sandra M. Silva & Ricardo Mateus, 2020. "Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks," Energies, MDPI, vol. 13(11), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Keiner & Larissa D.S.N.S. Barbosa & Dmitrii Bogdanov & Arman Aghahosseini & Ashish Gulagi & Solomon Oyewo & Michael Child & Siavash Khalili & Christian Breyer, 2021. "Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050," Energies, MDPI, vol. 14(13), pages 1-51, June.
    2. Gábor L. Szabó & Ferenc Kalmár, 2018. "Parametric Analysis of Buildings’ Heat Load Depending on Glazing—Hungarian Case Study," Energies, MDPI, vol. 11(12), pages 1-16, November.
    3. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    5. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Jaykumar Joshi & Akhilesh Magal & Vijay S. Limaye & Prima Madan & Anjali Jaiswal & Dileep Mavalankar & Kim Knowlton, 2022. "Climate change and 2030 cooling demand in Ahmedabad, India: opportunities for expansion of renewable energy and cool roofs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-17, October.
    7. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
    8. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. He, Ke-Lun & Chen, Qun & Ma, Huan & Zhao, Tian & Hao, Jun-Hong, 2020. "An isomorphic multi-energy flow modeling for integrated power and thermal system considering nonlinear heat transfer constraint," Energy, Elsevier, vol. 211(C).
    10. Leila Luttenberger Marić & Hrvoje Keko & Marko Delimar, 2022. "The Role of Local Aggregator in Delivering Energy Savings to Household Consumers," Energies, MDPI, vol. 15(8), pages 1-27, April.
    11. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    12. Cabeza, Luisa F. & Ürge-Vorsatz, Diana & Palacios, Anabel & Ürge, Daniel & Serrano, Susana & Barreneche, Camila, 2018. "Trends in penetration and ownership of household appliances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4044-4059.
    13. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    14. Zhibin Wu & Nianping Li & Haijiao Cui & Jinqing Peng & Haowen Chen & Penglong Liu, 2017. "Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China," IJERPH, MDPI, vol. 14(10), pages 1-17, September.
    15. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    16. Amin Mohammadi & Mahmoud Reza Saghafi & Mansoureh Tahbaz & Farshad Nasrollahi, 2017. "Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    17. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    18. Peidong Sang & Jinjian Liu & Lin Zhang & Lingqiao Zheng & Haona Yao & Yanjie Wang, 2018. "Effects of Project Manager Competency on Green Construction Performance: The Chinese Context," Sustainability, MDPI, vol. 10(10), pages 1-17, September.
    19. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    20. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:345-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.