IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp235-253.html
   My bibliography  Save this article

Aerodynamic performance and wind-induced effect of large-scale wind turbine system under yaw and wind-rain combination action

Author

Listed:
  • Ke, Shitang
  • Yu, Wenlin
  • Wang, Tongguang
  • Ge, Yaojun

Abstract

Blade yaw will change aerodynamic performance of large-scale wind turbine structure, especially under rainstorm conditions. Structural responses and stability of large-scale wind turbine system during rainstorm are more complicated due to the impact force of rainstorm on the structural surface and its influences on the incoming turbulence. In this study, the 5 MW wind turbine tower-blade system which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was used as the research object. Firstly, the surrounding wind field of the 5 MW wind turbine tower-blade system under different yaw angles (0°, 5°, 10°, 20°, 30° and 45°) was simulated by the computational fluid dynamics (CFD) technology based on the wind-rain two-way coupling algorithm. Secondly, the wind-rain coupling synchronous iteration was carried out by adding the discrete phase model (DPM). Based on numerical simulation results, the influencing law of yaw angle on wind-driven rainfall, additional acting force of raindrops and rain-induced pressure coefficient was discussed. The velocity flow line, turbulence energy strength, raindrop running speed and trajectory action mechanism on the structural surface in wind-rain coupling field was disclosed. Moreover, the distribution laws and fitting formula of wind-rain equivalent pressure coefficient under different yaw angles were constructed. Finally, large-scale wind turbine tower-blade coupling model under different yaw angles was constructed by combining the finite element method. Structural responses, buckling stability and ultimate bearing capacity of the large-scale wind turbine system with considerations to different yaw angles under wind condition and wind-rain condition were discussed. Results demonstrated that yaw angle can affect aerodynamic force and comprehensive stress performance of the wind turbine system significantly. The wind-rain load enhances structural responses of the system, and decreases the overall buckling stability and ultimate bearing capacity of the wind turbine. Main conclusions not only can provide references for accurate load evaluation under extreme complex conditions, but also are conducive to deepen understandings on the action mechanism of wind-rain load.

Suggested Citation

  • Ke, Shitang & Yu, Wenlin & Wang, Tongguang & Ge, Yaojun, 2019. "Aerodynamic performance and wind-induced effect of large-scale wind turbine system under yaw and wind-rain combination action," Renewable Energy, Elsevier, vol. 136(C), pages 235-253.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:235-253
    DOI: 10.1016/j.renene.2018.12.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118315799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeong, Min-Soo & Kim, Sang-Woo & Lee, In & Yoo, Seung-Jae & Park, K.C., 2013. "The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade," Renewable Energy, Elsevier, vol. 60(C), pages 256-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiangjun & Jiang, Lifeng & Amjad, Ali & Yang, Hua & Yang, Junwei, 2024. "Experimental investigation on Aeroelastic response of long flexible blades in turbulent flow," Applied Energy, Elsevier, vol. 375(C).
    2. Weimin Wu & Xiongfei Liu & Jingcheng Liu & Shunpeng Zeng & Chuande Zhou & Xiaomei Wang, 2021. "Investigation into Yaw Motion Influence of Horizontal-Axis Wind Turbine on Wake Flow Using LBM-LES," Energies, MDPI, vol. 14(17), pages 1-37, August.
    3. Dai, Juchuan & He, Tao & Li, Mimi & Long, Xin, 2021. "Performance study of multi-source driving yaw system for aiding yaw control of wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 154-171.
    4. Wenting Chen & Hang Liu & Yonggang Lin & Wei Li & Yong Sun & Di Zhang, 2020. "LSTM-NN Yaw Control of Wind Turbines Based on Upstream Wind Information," Energies, MDPI, vol. 13(6), pages 1-23, March.
    5. Gao, Rongzhen & Yang, Junwei & Yang, Hua & Wang, Xiangjun, 2023. "Wind-tunnel experimental study on aeroelastic response of flexible wind turbine blades under different wind conditions," Renewable Energy, Elsevier, vol. 219(P2).
    6. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
    2. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    3. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    4. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    5. Davide Astolfi & Ravi Pandit & Linyue Gao & Jiarong Hong, 2022. "Individuation of Wind Turbine Systematic Yaw Error through SCADA Data," Energies, MDPI, vol. 15(21), pages 1-5, November.
    6. Shuting Wan & Lifeng Cheng & Xiaoling Sheng, 2015. "Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model," Energies, MDPI, vol. 8(7), pages 1-16, June.
    7. Wu, Guangxing & Zhang, Chaoyu & Cai, Chang & Yang, Ke & Shi, Kezhong, 2020. "Uncertainty prediction on the angle of attack of wind turbine blades based on the field measurements," Energy, Elsevier, vol. 200(C).
    8. Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
    9. Yang, Jian & Wang, Li & Song, Dongran & Huang, Chaoneng & Huang, Liansheng & Wang, Junlei, 2022. "Incorporating environmental impacts into zero-point shifting diagnosis of wind turbines yaw angle," Energy, Elsevier, vol. 238(PA).
    10. Win Naung, Shine & Rahmati, Mohammad & Farokhi, Hamed, 2021. "Nonlinear frequency domain solution method for aerodynamic and aeromechanical analysis of wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 66-81.
    11. Qiu, Yong-Xing & Wang, Xiao-Dong & Kang, Shun & Zhao, Ming & Liang, Jun-Yu, 2014. "Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method," Renewable Energy, Elsevier, vol. 70(C), pages 93-106.
    12. Dai, Juchuan & He, Tao & Li, Mimi & Long, Xin, 2021. "Performance study of multi-source driving yaw system for aiding yaw control of wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 154-171.
    13. Win Naung, Shine & Nakhchi, Mahdi Erfanian & Rahmati, Mohammad, 2021. "High-fidelity CFD simulations of two wind turbines in arrays using nonlinear frequency domain solution method," Renewable Energy, Elsevier, vol. 174(C), pages 984-1005.
    14. Jing, Bo & Qian, Zheng & Pei, Yan & Zhang, Lizhong & Yang, Tingyi, 2020. "Improving wind turbine efficiency through detection and calibration of yaw misalignment," Renewable Energy, Elsevier, vol. 160(C), pages 1217-1227.
    15. Xiaodong Wang & Zhaoliang Ye & Shun Kang & Hui Hu, 2019. "Investigations on the Unsteady Aerodynamic Characteristics of a Horizontal-Axis Wind Turbine during Dynamic Yaw Processes," Energies, MDPI, vol. 12(16), pages 1-23, August.
    16. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
    17. Yan Pei & Zheng Qian & Bo Jing & Dahai Kang & Lizhong Zhang, 2018. "Data-Driven Method for Wind Turbine Yaw Angle Sensor Zero-Point Shifting Fault Detection," Energies, MDPI, vol. 11(3), pages 1-14, March.
    18. Jeong, Min-Soo & Cha, Myung-Chan & Kim, Sang-Woo & Lee, In, 2015. "Numerical investigation of optimal yaw misalignment and collective pitch angle for load imbalance reduction of rigid and flexible HAWT blades under sheared inflow," Energy, Elsevier, vol. 84(C), pages 518-532.
    19. Weimin Wu & Xiongfei Liu & Jingcheng Liu & Shunpeng Zeng & Chuande Zhou & Xiaomei Wang, 2021. "Investigation into Yaw Motion Influence of Horizontal-Axis Wind Turbine on Wake Flow Using LBM-LES," Energies, MDPI, vol. 14(17), pages 1-37, August.
    20. Škvorc, Petar & Kozmar, Hrvoje, 2021. "Wind energy harnessing on tall buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:235-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.