IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p588-d1577755.html
   My bibliography  Save this article

A Review of Diagnostic Methods for Yaw Errors in Horizontal Axis Wind Turbines

Author

Listed:
  • Qian Li

    (Huaneng Clean Energy Research Institute, Huaneng Group Ltd., Beijing 102209, China
    These authors contributed equally to this work.)

  • Danyang Chen

    (The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Hangbing Lin

    (Huaneng Clean Energy Research Institute, Huaneng Group Ltd., Beijing 102209, China)

  • Xiaolei Yang

    (The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Yaw errors occur in wind turbines either during the installation stage or because of the aging of devices. It reduces the wind speed in the rotor axial direction and increases the structural loads in the lateral direction. Diagnosing yaw error rapidly and accurately is crucial for avoiding the introduced under-performance. In this review paper, we first introduce the fundamental concepts and principles of wind turbine yaw control strategies, and we discuss two types of yaw errors (i.e., the static yaw error and the dynamic yaw error) with their corresponding causes. Subsequently, we outline the existing yaw error diagnostic methods, which are based on the LiDAR (light detection and ranging) data, the SCADA (supervisory control and data acquisition) data, or a combination of the two, and we discuss the advantages and disadvantages of various methods. At last, we emphasize that the diagnostic performance can be improved via the combination of the LiDAR data and the SCADA data, and it benefits from an in-depth understanding of the salient features and influential factors associated with the yaw error. Meanwhile, the potential of intelligent clusters and digital twins for detecting yaw errors is discussed.

Suggested Citation

  • Qian Li & Danyang Chen & Hangbing Lin & Xiaolei Yang, 2025. "A Review of Diagnostic Methods for Yaw Errors in Horizontal Axis Wind Turbines," Energies, MDPI, vol. 18(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:588-:d:1577755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Predictive model of yaw error in a wind turbine," Energy, Elsevier, vol. 123(C), pages 119-130.
    2. Lopez, Daniel & Kuo, Jim & Li, Ni, 2019. "A novel wake model for yawed wind turbines," Energy, Elsevier, vol. 178(C), pages 158-167.
    3. Rauh, A. & Seelert, W., 1984. "The Betz optimum efficiency for windmills," Applied Energy, Elsevier, vol. 17(1), pages 15-23.
    4. Jing, Bo & Qian, Zheng & Pei, Yan & Zhang, Lizhong & Yang, Tingyi, 2020. "Improving wind turbine efficiency through detection and calibration of yaw misalignment," Renewable Energy, Elsevier, vol. 160(C), pages 1217-1227.
    5. Jeong, Min-Soo & Kim, Sang-Woo & Lee, In & Yoo, Seung-Jae & Park, K.C., 2013. "The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade," Renewable Energy, Elsevier, vol. 60(C), pages 256-268.
    6. Shuting Wan & Lifeng Cheng & Xiaoling Sheng, 2015. "Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model," Energies, MDPI, vol. 8(7), pages 1-16, June.
    7. Davide Astolfi & Ravi Pandit & Linyue Gao & Jiarong Hong, 2022. "Individuation of Wind Turbine Systematic Yaw Error through SCADA Data," Energies, MDPI, vol. 15(21), pages 1-5, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Bo & Qian, Zheng & Pei, Yan & Zhang, Lizhong & Yang, Tingyi, 2020. "Improving wind turbine efficiency through detection and calibration of yaw misalignment," Renewable Energy, Elsevier, vol. 160(C), pages 1217-1227.
    2. Davide Astolfi & Ravi Pandit & Linyue Gao & Jiarong Hong, 2022. "Individuation of Wind Turbine Systematic Yaw Error through SCADA Data," Energies, MDPI, vol. 15(21), pages 1-5, November.
    3. Yan Pei & Zheng Qian & Bo Jing & Dahai Kang & Lizhong Zhang, 2018. "Data-Driven Method for Wind Turbine Yaw Angle Sensor Zero-Point Shifting Fault Detection," Energies, MDPI, vol. 11(3), pages 1-14, March.
    4. Yang, Jian & Wang, Li & Song, Dongran & Huang, Chaoneng & Huang, Liansheng & Wang, Junlei, 2022. "Incorporating environmental impacts into zero-point shifting diagnosis of wind turbines yaw angle," Energy, Elsevier, vol. 238(PA).
    5. Dai, Juchuan & He, Tao & Li, Mimi & Long, Xin, 2021. "Performance study of multi-source driving yaw system for aiding yaw control of wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 154-171.
    6. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
    7. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    8. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    9. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    10. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    11. Francesco Castellani & Ravi Pandit & Francesco Natili & Francesca Belcastro & Davide Astolfi, 2023. "Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations," Energies, MDPI, vol. 16(3), pages 1-15, January.
    12. Cortina, G. & Sharma, V. & Calaf, M., 2017. "Investigation of the incoming wind vector for improved wind turbine yaw-adjustment under different atmospheric and wind farm conditions," Renewable Energy, Elsevier, vol. 101(C), pages 376-386.
    13. Win Naung, Shine & Nakhchi, Mahdi Erfanian & Rahmati, Mohammad, 2021. "High-fidelity CFD simulations of two wind turbines in arrays using nonlinear frequency domain solution method," Renewable Energy, Elsevier, vol. 174(C), pages 984-1005.
    14. Huang, Wei & Tang, Rongjiang & Ma, Huihuan, 2024. "The review of Vortex lattice method for offshore wind turbines," Renewable Energy, Elsevier, vol. 236(C).
    15. Tang, Zhenhao & Zhao, Gengnan & Ouyang, Tinghui, 2021. "Two-phase deep learning model for short-term wind direction forecasting," Renewable Energy, Elsevier, vol. 173(C), pages 1005-1016.
    16. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
    17. He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
    18. Jong-Hyeon Shin & Jong-Hwi Lee & Se-Myong Chang, 2019. "A Simplified Numerical Model for the Prediction of Wake Interaction in Multiple Wind Turbines," Energies, MDPI, vol. 12(21), pages 1-14, October.
    19. Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
    20. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:588-:d:1577755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.