IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/968384.html
   My bibliography  Save this article

Wind and Wave Disturbances Compensation to Floating Offshore Wind Turbine Using Improved Individual Pitch Control Based on Fuzzy Control Strategy

Author

Listed:
  • Feng Yang
  • Qing-wang Song
  • Lei Wang
  • Shan Zuo
  • Sheng-shan Li

Abstract

Due to the rich and high quality of offshore wind resources, floating offshore wind turbine (FOWT) arouses the attentions of many researchers. But on a floating platform, the wave and wind induced loads can significantly affect power regulation and vibration of the structure. Therefore, reducing these loads becomes a challenging part of the design of the floating system. To better alleviate these fatigue loads, a control system making compensations to these disturbances is proposed. In this paper an individual pitch control (IPC) system integrated with disturbance accommodating control (DAC) and model prediction control (MPC) through fuzzy control is developed to alleviate the fatigue loads. DAC is mainly used to mitigate the effects of wind disturbance and MPC counteracts the effects of wave on the structure. The new individual pitch controller is tested on the NREL offshore 5 MW wind turbine mounted on a barge with a spread-mooring system, running in FAST, operating above-rated condition. Compared to the original baseline collective pitch control (CPC) (Jonkman et al., 2007), the IPC system shows a better performance in reducing fatigue loads and is robust to complex wind and wave disturbances as well.

Suggested Citation

  • Feng Yang & Qing-wang Song & Lei Wang & Shan Zuo & Sheng-shan Li, 2014. "Wind and Wave Disturbances Compensation to Floating Offshore Wind Turbine Using Improved Individual Pitch Control Based on Fuzzy Control Strategy," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-10, March.
  • Handle: RePEc:hin:jnlaaa:968384
    DOI: 10.1155/2014/968384
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/968384.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/968384.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/968384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mingming & Li, Xin & Tong, Jingxin & Xu, Jianzhong, 2020. "Load control of floating wind turbine on a Tension-Leg-Platform subject to extreme wind condition," Renewable Energy, Elsevier, vol. 151(C), pages 993-1007.
    2. Zhang, Mingming & Li, Xin & Xu, Jianzhong, 2019. "Smart control of fatigue loads on a floating wind turbine with a tension-leg-platform," Renewable Energy, Elsevier, vol. 134(C), pages 745-756.
    3. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Joannes Olondriz & Josu Jugo & Iker Elorza & Santiago Alonso-Quesada and Aron Pujana-Arrese, 2019. "A Feedback Control Loop Optimisation Methodology for Floating Offshore Wind Turbines," Energies, MDPI, vol. 12(18), pages 1-12, September.
    6. Flavie Didier & Yong-Chao Liu & Salah Laghrouche & Daniel Depernet, 2024. "A Comprehensive Review on Advanced Control Methods for Floating Offshore Wind Turbine Systems above the Rated Wind Speed," Energies, MDPI, vol. 17(10), pages 1-33, May.
    7. López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:968384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.