IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp235-240.html
   My bibliography  Save this article

Altering the chemical state of boron towards the facile synthesis of LiBH4 via hydrogenating lithium compound-metal boride mixture

Author

Listed:
  • Cai, Weitong
  • Hou, Jianming
  • Huang, Shiyong
  • Chen, Juner
  • Yang, Yuanzheng
  • Tao, Pingjun
  • Ouyang, Liuzhang
  • Wang, Hui
  • Yang, Xusheng

Abstract

Boron sources in forms of SiB4/FeB/TiB2 were used to react with LiF/LiH under hydrogen atmosphere to investigate their effectiveness for synthesizing LiBH4, a promising hydrogen storage material. Fourier transform infrared (FTIR) study revealed the formation of BH bond vibrations in these hydrogenated systems, and it demonstrated the generation of LiBH4. When using FeB and TiB2, few amounts of BH bonds were formed in the hydrogenated samples either reacting with LiH or LiF. When utilizing SiB4, the formation of BH bonds was promoted for both systems mixing with LiH and LiF. The results imply that a stepwise process of LiBH4-x→LiBH4 possibly took place during the hydrogenation process. Importantly, SiB4LiH system exhibited the best hydrogenation performance. At moderate conditions of 250 °C and 10 MPa H2, LiBH4 was successfully synthesized from this system. A facile synthesis pathway, SiB4(s) + 4LiH(s) + 6H2(g) → 4LiBH4(s) + Si(s), having a ΔrHm of −65 kJ/mol H2, was proposed. This study supports that the chemical state of boron in the reactant is an important factor affecting the generation of LiBH4. A hydrogenation reaction between SiB4 and CaH2 or MgH2 may be also applicable for synthesizing Ca(BH4)2 or Mg(BH4)2, which are regarded as potential hydrogen storage materials.

Suggested Citation

  • Cai, Weitong & Hou, Jianming & Huang, Shiyong & Chen, Juner & Yang, Yuanzheng & Tao, Pingjun & Ouyang, Liuzhang & Wang, Hui & Yang, Xusheng, 2019. "Altering the chemical state of boron towards the facile synthesis of LiBH4 via hydrogenating lithium compound-metal boride mixture," Renewable Energy, Elsevier, vol. 134(C), pages 235-240.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:235-240
    DOI: 10.1016/j.renene.2018.11.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cezar Comanescu, 2023. "Calcium Borohydride Ca(BH 4 ) 2 : Fundamentals, Prediction and Probing for High-Capacity Energy Storage Applications, Organic Synthesis and Catalysis," Energies, MDPI, vol. 16(11), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    2. Mohamed Mehana & Fangxuan Chen & Mashhad Fahes & Qinjun Kang & Hari Viswanathan, 2022. "Geochemical Modelling of the Fracturing Fluid Transport in Shale Reservoirs," Energies, MDPI, vol. 15(22), pages 1-13, November.
    3. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    4. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    5. Crow, Daniel J.G. & Giarola, Sara & Hawkes, Adam D., 2018. "A dynamic model of global natural gas supply," Applied Energy, Elsevier, vol. 218(C), pages 452-469.
    6. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    7. Piotr Słomski & Maria Mastalerz & Jacek Szczepański & Arkadiusz Derkowski & Tomasz Topór & Marcin Lutyński, 2020. "Experimental and numerical investigation of CO2–brine–rock interactions in the early Palaeozoic mudstones from the Polish part of the Baltic Basin at simulatedin situ conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 567-590, June.
    8. Afees Adebare Salisu & Idris A. Adediran, 2018. "The U.S. Shale Oil Revolution and the Behavior of Commodity Prices," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 3(1), pages 27-53, September.
    9. Zijun Huang & Dedong He & Weihua Deng & Guowu Jin & Ke Li & Yongming Luo, 2023. "Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    11. Jong-Hyun Kim & Yong-Gil Lee, 2018. "Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
    12. Anthony N. Rezitis & Panagiotis Andrikopoulos & Theodoros Daglis, 2024. "Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 451-483, March.
    13. Xiaoping Li & Shudong Liu & Ji Li & Xiaohua Tan & Yilong Li & Feng Wu, 2020. "Apparent Permeability Model for Gas Transport in Multiscale Shale Matrix Coupling Multiple Mechanisms," Energies, MDPI, vol. 13(23), pages 1-24, November.
    14. Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
    15. Bauer, Fredric & Fontenit, Germain, 2021. "Plastic dinosaurs – Digging deep into the accelerating carbon lock-in of plastics," Energy Policy, Elsevier, vol. 156(C).
    16. Li, Dafang & Sun, Weifu & Chen, Yangchaoyue, 2024. "Enhancing overpressure and velocity of methane detonation by adding sodium chlorate with a view to fracturing shale," Applied Energy, Elsevier, vol. 355(C).
    17. Li, Boying & Zheng, Mingbo & Zhao, Xinxin & Chang, Chun-Ping, 2021. "An assessment of the effect of partisan ideology on shale gas production and the implications for environmental regulations," Economic Systems, Elsevier, vol. 45(3).
    18. Zhou, Wei & Li, Xiangchengzhen & Qi, ZhongLi & Zhao, HaiHang & Yi, Jun, 2024. "A shale gas production prediction model based on masked convolutional neural network," Applied Energy, Elsevier, vol. 353(PA).
    19. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Jong-Hyun Kim & Yong-Gil Lee, 2017. "Analyzing the Learning Path of US Shale Players by Using the Learning Curve Method," Sustainability, MDPI, vol. 9(12), pages 1-8, December.

    More about this item

    Keywords

    Hydrogen storage; Hydrogenation; Boride; Borohydride; LiBH4;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:235-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.