IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp1024-1033.html
   My bibliography  Save this article

Peak forces on a point absorbing wave energy converter impacted by tsunami waves

Author

Listed:
  • Sjökvist, Linnea
  • Göteman, Malin

Abstract

Although a tsunami wave in deep sea can be simulated using linear shallow water theory, the wave dynamics of a tsunami running up a continental shelf is very complex, and different phenomena may occur, depending on the width and profile of the shelf, the topography of the coast, incident angle of the tsunami and other factors. How to simulate tsunami waves at an intermediate depth is studied in this paper by using three different simulation approaches for tsunamis, a soliton, a simulated high incident current and a dam-break approach. The surface wave profiles as well as the velocity- and pressure profiles for the undisturbed waves are compared. A regular Stokes 5th wave of the same amplitude is simulated for comparison. A wave energy converter model, previously validated with wave tank experiment, is then used to study the survivability of the Uppsala University wave energy device for the different waves. The force in the mooring line is studied together with the resulting force on a bottom mounted column, corresponding to the linear generator on the seabed.

Suggested Citation

  • Sjökvist, Linnea & Göteman, Malin, 2019. "Peak forces on a point absorbing wave energy converter impacted by tsunami waves," Renewable Energy, Elsevier, vol. 133(C), pages 1024-1033.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:1024-1033
    DOI: 10.1016/j.renene.2018.10.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118312953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ransley, E.J. & Greaves, D.M. & Raby, A. & Simmonds, D. & Jakobsen, M.M. & Kramer, M., 2017. "RANS-VOF modelling of the Wavestar point absorber," Renewable Energy, Elsevier, vol. 109(C), pages 49-65.
    2. Steven Douglas & Ioan Nistor, 2015. "On the effect of bed condition on the development of tsunami-induced loading on structures using OpenFOAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1335-1356, March.
    3. Stephen Rose & Paulina Jaramillo & Mitchell J. Small & Jay Apt, 2013. "Quantifying the Hurricane Catastrophe Risk to Offshore Wind Power," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2126-2141, December.
    4. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linnea Sjökvist & Malin Göteman, 2017. "Peak Forces on Wave Energy Linear Generators in Tsunami and Extreme Waves," Energies, MDPI, vol. 10(9), pages 1-19, September.
    2. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    3. Santo, H. & Taylor, P.H. & Stansby, P.K., 2020. "The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K," Renewable Energy, Elsevier, vol. 146(C), pages 444-459.
    4. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    5. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    6. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    7. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    8. Iglesias, G. & Carballo, R., 2010. "Wave energy and nearshore hot spots: The case of the SE Bay of Biscay," Renewable Energy, Elsevier, vol. 35(11), pages 2490-2500.
    9. Yue Hong & Mikael Eriksson & Cecilia Boström & Rafael Waters, 2016. "Impact of Generator Stroke Length on Energy Production for a Direct Drive Wave Energy Converter," Energies, MDPI, vol. 9(9), pages 1-12, September.
    10. Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
    11. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    12. Venugopalan Kurupath & Rickard Ekström & Mats Leijon, 2013. "Optimal Constant DC Link Voltage Operation of a Wave Energy Converter," Energies, MDPI, vol. 6(4), pages 1-14, April.
    13. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    14. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    15. Liberti, Luca & Carillo, Adriana & Sannino, Gianmaria, 2013. "Wave energy resource assessment in the Mediterranean, the Italian perspective," Renewable Energy, Elsevier, vol. 50(C), pages 938-949.
    16. Zheng, Siming & Zhang, Yongliang & Iglesias, Gregorio, 2020. "Concept and performance of a novel wave energy converter: Variable Aperture Point-Absorber (VAPA)," Renewable Energy, Elsevier, vol. 153(C), pages 681-700.
    17. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    18. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    19. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    20. Aydoğan, Burak & Ayat, Berna & Yüksel, Yalçın, 2013. "Black Sea wave energy atlas from 13 years hindcasted wave data," Renewable Energy, Elsevier, vol. 57(C), pages 436-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:1024-1033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.