Performance of global luminous efficacy models and proposal of a new model for daylighting in Burgos, Spain
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2018.10.085
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fakra, A.H. & Boyer, H. & Miranville, F. & Bigot, D., 2011. "A simple evaluation of global and diffuse luminous efficacy for all sky conditions in tropical and humid climate," Renewable Energy, Elsevier, vol. 36(1), pages 298-306.
- Azad, Abdus Salam & Rakshit, Dibakar & Patil, K.N., 2018. "Model development and evaluation of global and diffuse luminous efficacy for humid sub-tropical region," Renewable Energy, Elsevier, vol. 119(C), pages 375-387.
- Vartiainen, Eero, 2000. "A comparison of luminous efficacy models with illuminance and irradiance measurements," Renewable Energy, Elsevier, vol. 20(3), pages 265-277.
- Chaiwiwatworakul, Pipat & Chirarattananon, Surapong, 2013. "Luminous efficacies of global and diffuse horizontal irradiances in a tropical region," Renewable Energy, Elsevier, vol. 53(C), pages 148-158.
- Robledo, Luis & Soler, Alfonso, 2000. "Luminous efficacy of direct solar radiation for clear skies," Energy, Elsevier, vol. 25(8), pages 689-701.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dieste-Velasco, M.I. & Díez-Mediavilla, M. & Alonso-Tristán, C. & González-Peña, D. & Rodríguez-Amigo, M.C. & García-Calderón, T., 2020. "A new diffuse luminous efficacy model for daylight availability in Burgos, Spain," Renewable Energy, Elsevier, vol. 146(C), pages 2812-2826.
- Li, Danny H.W. & Aghimien, Emmanuel I. & Tsang, Ernest K.W., 2022. "Application of artificial neural networks in horizontal luminous efficacy modeling," Renewable Energy, Elsevier, vol. 197(C), pages 864-878.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Danny H.W. & Aghimien, Emmanuel I. & Tsang, Ernest K.W., 2022. "Application of artificial neural networks in horizontal luminous efficacy modeling," Renewable Energy, Elsevier, vol. 197(C), pages 864-878.
- Dieste-Velasco, M.I. & Díez-Mediavilla, M. & Alonso-Tristán, C. & González-Peña, D. & Rodríguez-Amigo, M.C. & García-Calderón, T., 2020. "A new diffuse luminous efficacy model for daylight availability in Burgos, Spain," Renewable Energy, Elsevier, vol. 146(C), pages 2812-2826.
- Azad, Abdus Salam & Rakshit, Dibakar & Patil, K.N., 2018. "Model development and evaluation of global and diffuse luminous efficacy for humid sub-tropical region," Renewable Energy, Elsevier, vol. 119(C), pages 375-387.
- Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
- Soler, A & Gopinathan, K.K & Claros, S.T, 2001. "A study on zenith luminance on Madrid overcast skies," Renewable Energy, Elsevier, vol. 23(1), pages 49-55.
- Janjai, S. & Sricharoen, K. & Pattarapanitchai, S., 2011. "Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics," Applied Energy, Elsevier, vol. 88(12), pages 4749-4755.
- Robledo, L. & Soler, A., 2002. "A simple clear skies model for the luminous efficacy of diffuse solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 26(2), pages 169-176.
- Forero, N.L. & Caicedo, L.M. & Gordillo, G., 2007. "Correlation of global solar radiation values estimated and measured on an inclined surface for clear days in Bogotá," Renewable Energy, Elsevier, vol. 32(15), pages 2590-2602.
- Bandara, Kanchana & Varpe, Øystein & Ji, Rubao & Eiane, Ketil, 2018. "A high-resolution modeling study on diel and seasonal vertical migrations of high-latitude copepods," Ecological Modelling, Elsevier, vol. 368(C), pages 357-376.
- Singh, M.C. & Garg, S.N., 2010. "Illuminance estimation and daylighting energy savings for Indian regions," Renewable Energy, Elsevier, vol. 35(3), pages 703-711.
- Chaiwiwatworakul, Pipat & Chirarattananon, Surapong, 2013. "Luminous efficacies of global and diffuse horizontal irradiances in a tropical region," Renewable Energy, Elsevier, vol. 53(C), pages 148-158.
- Robledo, Luis & Soler, Alfonso, 2001. "Luminous efficacy of direct solar radiation for all sky types," Energy, Elsevier, vol. 26(7), pages 669-677.
- Soler, A & Gopinathan, K.K, 2001. "Analysis of zenith luminance data for all sky conditions," Renewable Energy, Elsevier, vol. 24(2), pages 185-196.
- Jiraphorn Mahawan & Atthakorn Thongtha, 2021. "Experimental Investigation of Illumination Performance of Hollow Light Pipe for Energy Consumption Reduction in Buildings," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Janjai, S. & Prathumsit, J. & Buntoung, S. & Wattan, R. & Pattarapanitchai, S. & Masiri, I., 2014. "Modeling the luminous efficacy of direct and diffuse solar radiation using information on cloud, aerosol and water vapor in the tropics," Renewable Energy, Elsevier, vol. 66(C), pages 111-117.
- Hwang Yi & Mi-Jin Kim & Yuri Kim & Sun-Sook Kim & Kyu-In Lee, 2019. "Rapid Simulation of Optimally Responsive Façade during Schematic Design Phases: Use of a New Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 11(9), pages 1-28, May.
- Beccali, M. & Finocchiaro, P. & Ippolito, M.G. & Leone, G. & Panno, D. & Zizzo, G., 2018. "Analysis of some renewable energy uses and demand side measures for hotels on small Mediterranean islands: A case study," Energy, Elsevier, vol. 157(C), pages 106-114.
- Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
- Barbón, A. & Sánchez-Rodríguez, J.A. & Bayón, L. & Barbón, N., 2018. "Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements," Applied Energy, Elsevier, vol. 212(C), pages 733-745.
- Saxena, Rajat & Rakshit, Dibakar & Kaushik, S.C., 2020. "Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings," Renewable Energy, Elsevier, vol. 149(C), pages 587-599.
More about this item
Keywords
Luminous efficacy models; Illuminance; Irradiance; Modelling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:1000-1010. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.